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NEUROCIRCUITRY OF ADDICTION

PETER W. KALIVAS

Addiction can be defined as drug-induced changes in the
central nervous system (CNS) that produce maladaptive al-
terations in spontaneous behavior and in the behavioral re-
sponse to readministration of that drug. Maladaptive behav-
iors include those identified as criteria for addiction in the
DSM-IV. In general what most psychiatric metrics describe
as addiction associated behaviors is the emergence of behav-
iors to obtain drug reward at the expense of engaging in
behaviors to seek natural rewards, ranging from biological
rewards such as sex to cultural rewards such as stable per-
sonal relationships. The substitution of drug reward for nat-
ural reward suggests that the neuropathology of addiction
may reside in the same neural systems that mediate the
detection and acquisition of natural rewards. This postulate
forms a primary premise in the search for the neurobiologi-
cal basis of addiction, and has revealed a circuit consisting
of interconnections among limbic cortex, basal ganglia, and
brainstem nuclei that is pathologically modified by repeated
drug administration. The drug-induced changes in the
structure and function of this circuit are progressive, and
to some extent parallel the development of the behavioral
characteristics of addiction.
Over the last decade neurobiologists have come to de-

scribe the behavioral transition to addiction as a drug-
induced neuroplastic process (1–3). In parallel with the
development and expression of addictive behaviors, the
neurobiology of these two components of the transition to
addiction can be described as: (a) the sequence of molecular
events that establish the neuroplastic changes leading to ad-
diction, and (b) the neuroplastic changes themselves. Ac-
cordingly, a number of molecular neuroplastic alterations
have been identified in the brain after repeated drug admin-
istration, and some of these appear to be important in the
development and/or expression of addictive behaviors.
However, the process of identifying drug-induced changes
is accelerating and producing a deluge of information that
is proving increasingly difficult to integrate into a coherent
sequence of neuroplastic changes that mediate addiction. In
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part the difficulty of integration arises because the veracity of
each molecular neuroplastic event must be tested in animal
models of addiction; a labor-intensive process often employ-
ing imprecise tools for selective in vivo manipulation of cell
biology. Moreover, this problem is compounded by the fact
that the neuroadaptations associated with use of a drug of
abuse are not entirely predicated on the pharmacology of
the drug. It has become increasing clear that in addition to
drug pharmacology, the environmental regulation of the
drug-induced changes is a critical factor in the development
and expression of addiction (4–6).
Although a critical role for environment in the manifesta-

tion of addicted behaviors has been obvious for decades in
the behavioral evaluation of addiction in humans and ani-
mal models, only recently has the drug–environment inter-
face been directly evaluated as critical in the cellular neuro-
adaptations mediating addiction (7,8). The realization that
the neuroplasticity defining addiction arises as a collabora-
tion between repeated drug administration and environ-
mental associations is contributing to the construction of a
template to help organize and integrate the emerging tide
of data that describes the cellular adaptations potentially
mediating addiction. Figure 95.1 illustrates how learning
to associate environmental stimuli with the molecular action
of a drug impinges on brain circuitry to elicit neuroplastic
changes producing addiction. Figure 95.1 is used to orga-
nize this chapter into the three current arenas of investiga-
tion into the neurobiology of addiction: (a) the molecular
site of action by a drug and the immediate consequences of
drug administration to intracellular signaling and synaptic
transmission; (b) the circuitry involved in learning and how
this integrates with the molecular action of drugs of abuse;
and (c) the overall circuitry of reward that contains both
molecular sites of drug action and learning circuits, and
forms the site of pathologic change mediating addiction.

PHARMACOLOGY

Molecular Binding Site of the Drug

The molecular site of action and the immediate sequence
of cellular events have been successfully decoded for many
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FIGURE 95.1. Collaboration between the pharmacology of a
drug of abuse and environmental stimuli. Depiction of the impact
that both themolecular binding site of a drug and environmental
stimuli have on the neuroplasticity associated with drug addic-
tion.

drugs of abuse. Ethanol remains a notable exception where
a number of candidate binding sites are currently being
evaluated for a role in addiction. In contrast, for many drugs
of abuse a reasonably accurate portrait of site of action has
emerged. Over the last two decades a common direct or
indirect action by drugs on dopamine transmission in the
projection from the ventral mesencephalon (ventral tegmen-
tal area, VTA) to the forebrain has consistently been pro-
posed and experimentally evaluated (8–11). This historic
focus arose from studies employing lesions and the adminis-
tration of dopamine receptor antagonists that converged on
the potential importance of the dopamine projections in
mediating natural, electrical, and drug reward. Figure 95.2
illustrates the dopamine projections most frequently evalu-
ated in this regard and includes axon terminations in the
amygdala, nucleus accumbens, prefrontal cortex (PFC), and
ventral pallidum that arise from cell bodies in the VTA.
Examination of the known binding sites for drugs of abuse
reveals for some drugs a clear relationship between drug
binding site and dopamine transmission (Fig. 95.3). Thus,
amphetamine-like psychostimulants inhibit the binding of
dopamine to the dopamine transporter and thereby elevate
extracellular dopamine (12,13). Nicotine binds directly to
acetylcholine nicotinic receptors on dopamine cells to in-
crease the firing frequency of the mesocorticolimbic dopa-
mine neurons (14). �-opioid receptors are found in high
density on presynaptic terminals of GABAergic interneu-

FIGURE 95.2. The circuit thought to be critical for mediating
both natural and drug reward behavior. Amy, amygdala; MD,
mediodorsal thalamus; NA, nucleus accumbens; PFC, prefrontal
cortex; VP, ventral pallidum; VTA, ventral tegmental area.

rons and GABAergic axonal afferents to the VTA (15–19).
Stimulation of these receptors inhibits the tonic and stimu-
lated release of GABA, thereby increasing the firing fre-
quency of the dopamine neurons. Alcohol modulates
GABA-gated chloride conductance, as well as sodium and
calcium conductances gated by glutamate (20,21). By pro-
moting chloride conductance and inhibiting glutamate
gated sodium and calcium fluxes alcohol is generally found
to be inhibitory on neuronal activity. However, electrophys-
iologic and neurochemical studies reveal that alcohol in-
creases dopamine cell firing and dopamine release in axon
terminal fields via an action within the VTA (22–25). Thus,

FIGURE 95.3. Sites of action by addictive drugs to augment me-
soaccumbens dopamine transmission.
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it has been hypothesized that alcohol may act preferentially
on GABAergic interneurons in the VTA to disinhibit dopa-
mine cells. Moreover, recent evidence demonstrates that the
capacity of alcohol to elevate dopamine transmission is
blocked by opioid receptor antagonists (26). This indicates
that alcohol is directly or indirectly increasing enkephalin
release in the VTA, thereby disinhibiting dopamine cell fir-
ing. Indeed, this mechanism is likely to contribute to the
therapeutic efficacy of opioid antagonist naltrexone in atten-
uating relapse in alcohol addiction (27,28).
By inhibiting the NMDA subtype of the glutamate re-

ceptor, phencyclidine may decrease the activity of GABAer-
gic interneurons in the VTA and thereby activate dopamine
cell firing (29). Although these data strongly indicate a com-
mon action of drugs of abuse to stimulate dopamine trans-
mission, notable exceptions exist. Of the major classes of
drugs of abuse, the allosteric GABAA receptor agonists, in-
cluding benzodiazepines and barbiturates, do not appear to
stimulate dopamine cells or increase dopamine release (30).
Also, although systemic administration of �-opioids clearly
activates dopamine transmission by disinhibiting dopamine
cell activity, it is equally clear that stimulating �-opioid
receptors located postsynaptic to the dopamine projection
in the nucleus accumbens is sufficient to elicit behaviors
that are characteristic of addiction (31–34). Thus, the his-
toric focus on dopamine transmission has identified an ini-
tial substrate for most drugs of abuse. However, the excep-
tions to this rule point clearly to the conclusion that,
although an action on dopamine transmission may be a
sufficient substrate to initiate drug-induced neuroplasticity
relevant to addiction, other substrates are also sufficient.
Evaluating potential nondopaminergic substrates for ini-

tiating addiction-related neuroplasticity points most di-
rectly to modulating GABA transmission. Figure 95.2 illus-
trates that dopamine terminals in the nucleus accumbens
synapse on GABAergic cells. Moreover, these GABAergic
cells innervate GABAergic neurons in the VP. Indeed, Fig.
95.2 shows that there is a topographically organized inter-
connection among the nucleus accumbens, VP, and VTA
that is GABAergic (35,36). Given the apparent importance
of modulating dopamine transmission in this circuit in the
neuroplasticity leading to addiction, it seems reasonable that
directly modulating the GABAergic subcircuit with opioids
or allosteric GABAergic agonists may also produce neuro-
plastic changes relevant to the development of addiction.
Although substantial evidence exists for �-opioids that this
is true (31–34), this hypothesis has not yet been evaluated
for benzodiazepines or barbiturates.

Pharmacologic Versus Physiologic
Release of Dopamine

Studies in animal models measuring the in vivo release of
dopamine with microdialysis reveal that natural rewarding

or aversive stimuli increase dopamine release in the nucleus
accumbens (6,37–42). However, the physiologic release of
dopamine stimulated by environmental stimuli is of sub-
stantially less magnitude and duration than the pharmaco-
logic release elicited by most drugs of abuse (22,43–47).
The importance of excessive pharmacologic release of dopa-
mine can be extrapolated from what is known about the
behavioral situations that elicit physiologic activation of
mesoaccumbens dopamine transmission. Dopamine release
and cell firing are increased by the presentation of novel
and motivationally relevant environmental stimuli (6,48).
This has contributed to the notion that enhanced dopamine
release in the nucleus accumbens signals the appearance of
an important event that requires the creation and engage-
ment of an adaptive behavioral strategy. This signal is sup-
plied to numerous forebrain structures constituting the lim-
bic cortex and basal ganglia (Fig. 95.2) and presumably
initiates the recruitment of cortically derived memories and
cognitive strategies, as well as motor output. In doing so,
dopamine plays a role in initiating and establishing neuro-
plastic changes associated with developing behavioral strate-
gies necessary to adapt to novel stimuli. One characteristic
of the activation of dopamine transmission by environmen-
tal stimuli is that the release of dopamine diminishes with
repeated exposure to the same stimulus as the organism
establishes an adaptive behavioral response (40,49,50).
Thus, dopamine contributes to the establishment of neuro-
plastic changes that mediate behavioral adaptation to rele-
vant environmental stimuli, but may not be necessary for
the expression of those behaviors. Rather, once a behavioral
response to a stimulus has been established, the stimulus
elicits the behavior via interactions among the limbic cortex,
thalamus, and basal ganglia, with less involvement by meso-
corticolimbic dopamine transmission (51,52). The transi-
tion from dopamine-dependent to behaviors less dependent
on dopamine is illustrated in Fig. 95.4 as the transition in
neural substrates mediating behavioral responding to a
novel and familiar stimulus.
Given the apparent role of dopamine release in establish-

ing adaptive behavioral responses and the magnitude of do-
pamine release elicited by most drugs of abuse, it is perhaps
not surprising that nonphysiologic neuroadaptations ensue,
culminating in the maladaptive behaviors characteristic of
addiction. Moreover, given that the physiologic release of
dopamine is elicited by novel and salient environmental
stimuli to facilitate the creation of enduring behavioral
strategies, it is reasonable that the pharmacologic magnitude
of drug-induced release would result in the addict develop-
ing potent learned associations between the dopamine-re-
leasing drug experience and environmental stimuli. This
strong association may contribute to the intense cravings
that can be induced by environmental stimuli the addict
has learned to associate with the drug experience.
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FIGURE95.4. Changes in the role ofmesencephalic versus cortical input to the nucleus accumbens
with repeated exposure to natural motivational stimuli (A) and drug reward (B). Both a novel
stimulus and acute drug administration increase dopamine transmission. After repeated exposure
the natural stimulus produces little or no increase in extracellular dopamine and the behavioral
response to the stimulus arises primarily from cortical and allocortical interactions with the basal
ganglia. Similarly, repeated drug use results in a recruitment of cortico-accumbens circuitry, but
is also associated with augmented dopamine transmission. It is postulated that a portion of the
pathology of addiction arises from both an overstimulated cortico-accumbens projection and a
hyperresponsive mesoaccumbens dopamine projection.

LEARNING

Circuitry of Learning

A complete review of the current knowledge of the neural
circuitry involved in learning and memory is beyond the
scope of this chapter (53–56); however, it is clear that corti-
cal regions receiving dopaminergic axon terminations, such
as the prefrontal and anterior cingulate cortex and allocorti-
cal nuclei (including the hippocampus and amygdala) play
distinct yet integrated roles in memory and learning. As
illustrated in Fig. 95.2, these cortical and allocortical nuclei
have relatively dense glutamatergic projections to the nu-
cleus accumbens and synapse on the same neurons that re-
ceive dopaminergic afferents from the VTA (57,58). This
arrangement provides an anatomic substrate whereby
learned information can be integrated and guide adaptive
behavioral responding to environmental stimuli. Whether
or not these glutamatergic afferents to the nucleus accum-
bens influence the behavioral effects of drugs of abuse and
play a role in the neuroplasticity associated with the develop-
ment and expression of addictive behaviors is a subject of
much recent interest (13,59). For example, antagonists of
the NMDA subtype of glutamate receptors block the devel-
opment of behavioral neuroadaptations (e.g., behavioral
sensitization of motor activity) to the repeated administra-
tion of most drugs of abuse, including alcohol, psychostim-
ulants, and opioids (59,60). Moreover, it has been shown
that drug craving induced in addicts by environmental stim-
uli previously paired with the drug experience is associated
with metabolic activation of the anterior cingulate and

amygdala (4,61,62). The apparent recruitment of gluta-
matergic cortical regions by a drug-associated stimulus con-
current with the manifestation of behavioral characteristics
of addiction argues for a transition from primarily dopa-
mine-dependent behaviors elicited by acute drug adminis-
tration to primarily glutamate-dependent behaviors pro-
duced by drug or environmental stimuli in drug addicts.
Thus, as illustrated in Fig. 95.4, the development of addic-
tion may consist in part of a transition from dopamine- to
glutamate-dependent behaviors akin to what occurs during
adaptation to biologically relevant environmental stimuli,
such as food, sex, and stress. However, given the initial
pharmacologic activation of dopamine transmission pro-
duced by most drugs of abuse, the ensuing recruitment of
cortical glutamatergic neurons may also contain nonphysio-
logic constituents that contribute to the pathology of addic-
tion. Moreover, repeated administration of most drugs of
abuse, including psychostimulants, opioids, alcohol, and
nicotine, increases the capacity of subsequent drug adminis-
tration to release dopamine in the nucleus accumbens (2,63,
65). This neurochemical reverse-tolerance or sensitization is
opposite to what typically occurs with repeated exposure to
motivationally relevant environmental stimuli, such as food,
sex, and stress, and probably also contributes to the expres-
sion of addiction-related behaviors. Of note, the indirect
measurement of dopamine release using methylphenidate-
induced displacement of radiolabeled D2 receptor antago-
nist revealed an apparent decrease in dopamine release in
cocaine addicts compared with control subjects (66). As-
suming the veracity of D2 ligand displacement as an in vivo
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measure of dopamine release (67), this indicates a poten-
tially important distinction between data in animal models
and human cocaine addicts.

NEUROPLASTICITY

Motivational Circuitry as a Site of
Addiction Pathologies

The circuit shown in Fig. 95.2 contains interconnections
among mesencephalic dopamine, cortical glutamate, and
subcortical (basal ganglia) GABA neurons that can permit
the transition from dopamine- to glutamate-dependent be-
haviors. This circuit has been a focus for research aimed
at determining how the neuroplastic changes produced in
various nuclei by repeated drug action at a molecular level
are integrated with environmental stimuli to form the mal-
adaptive behaviors characteristic of addiction. Studies in this
regard are most numerous for psychostimulants; the find-
ings employing this class of addictive drugs provide the pri-
mary buttresses of the model. However, emerging data with
other drugs of abuse are generally consistent with this view;
moreover, there is an abundance of behavioral data support-
ing the possibility that the neuroplastic changes elicited by
repeated administration of one drug impinge on circuitry
shared with a different drug of abuse. For example, the
repeated administration of some drugs of abuse promotes
the acquisition of addiction-related behaviors to another
mechanistically similar drug of abuse (68,69). Similarly, a
number of overlapping cellular neuroadaptations, such as
changes in G proteins, tyrosine hydroxylase, and certain
immediate early genes, have been identified after repeated
exposure to different drugs of abuse (70–73). Also, a num-
ber of studies indicate behavioral and neurochemical overlap
between the effects of repeated drug administration and
motivationally relevant environmental stimuli (e.g., cross-
sensitization and cross-tolerance to stress) (65,69,74,75).

Drug-Induced Changes in Presynaptic
and Postsynaptic Dopamine Transmission

As described in the preceding, most addictive drugs produce
significant elevations in cortical and subcortical dopamine
transmission, and repeated drug-induced dopamine release
causes enduring alterations in presynaptic and postsynaptic
dopamine transmission. These changes have been character-
ized using animal models of addiction, including behavioral
sensitization studies involving repeated investigator admin-
istered drug, as well as studies in which the acquisition,
maintenance, and reinstatement of drug self-administration
is measured (9,76,77). The majority of studies have endea-
vored to identify changes in nucleus accumbens dopamine
transmission. However, in light of evidence implicating cor-
tical and allocortical brain regions in addiction, more recent
studies have come to focus dopamine innervation of the

prefrontal cortex and amygdala. In general, in animal
models the repeated administration of drugs of abuse, in-
cluding amphetamine-like psychostimulants, alcohol, nico-
tine, and opioids, produces an enduring increase in the ca-
pacity of subsequent drug injection or an environmental
stimulus, such as stress or sex, to release dopamine in the
nucleus accumbens (13,37,63–65). The enhanced releas-
ability may result in part from increased excitability of dopa-
mine cells (24,78–80), but also clearly involves increased
presynaptic release, as evidence by the enhanced release of
dopamine from synaptosomes or after direct drug adminis-
tration into the accumbens (81,82). Following repeated am-
phetamine and cocaine administration the elevated pre-
synaptic release of dopamine arises from enhanced
presynaptic calcium signaling through calmodulin kinase II
(83–85). A number of enduring changes in postsynaptic
dopamine signaling have also been identified. Most of these
changes can be traced to alterations in gene expression fol-
lowing stimulation of the D1 receptor-signaling cascade (2,
86). Interestingly, among the genes showing changed
expression are protein products, including preprodynor-
phin, NAC-1, and delta-Fos-B, that appear to dampen en-
hanced dopamine transmission and/or the expression of be-
haviors potentially related to addiction, such as motor
sensitization and conditioned place preference (87–89).
This poses the likelihood that many changes produced by
repeated drug administration are not necessarily promoting
addictive behaviors but may constitute homeostatic altera-
tions to minimize the impact of pathologic neuroadapta-
tions elicited by repeated drug injection. In addition to
changes in gene expression in the nucleus accumbens that
affect dopamine transmission, repeated administration of
psychostimulants also increases or decreases the synthesis
of proteins affecting glutamate transmission that may alter
postsynaptic corticofugal neurotransmission (see the follow-
ing). This includes drug-induced changes in glutamate re-
ceptor subunits, as well as proteins involved in the traffick-
ing and signaling of glutamate receptors (13,59,90,91).
In addition to the nucleus accumbens, more recent stud-

ies have examined the effect of repeated drug administration
on dopamine transmission in the PFC. In general, repeated
systemic drug administration reduces the releasability of do-
pamine in the PFC. Such a blunting of stimulus- or drug-
induced dopamine transmission in the PFC has been most
clearly shown after repeated cocaine and phencyclidine ad-
ministration (50,92). Further implicating reduced cortical
dopamine transmission, destruction of dopamine afferents
to or blockade of dopamine receptors in the PFC promotes
behavioral sensitization and drug self-administration
(93–95). Moreover, the blunting of PFC dopamine trans-
mission may be related to the cognitive dysfunction and
increased impulsivity often associated with drug addiction
(96).
The effect of repeated drug administration has also been

evaluated in the amygdala, and in contrast with the PFC an
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augmentation or no change in drug-stimulated dopamine
release after repeated drug administration has been observed
(97,98). Although the effect of repeated drug administration
on dopamine release in the PFC and amygdala differs, the
changes in dopamine transmission in both structures may
contribute to expression of addictive behavior. Although
reduced dopamine transmission in the PFC may contribute
to cognitive dysfunction in some addicts (see the preceding),
enhanced release of dopamine in the amygdala may contrib-
ute to the strong learned associations made between drug
taking and environmental stimuli that have been repeatedly
paired with drug taking. Supporting this possibility, stimu-
lation of dopamine transmission in the amygdala increases
stimulus-reward associations, whereas the inhibition of do-
pamine transmission blocks cue-induced reinstatement of
lever pressing for cocaine (99,100). Thus, the sensitized re-
lease of dopamine in the amygdala may contribute to cue-
induced relapse, a conclusion directly supported by imaging
studies showing that drug craving in addicts is associated
with metabolic activation of the amygdala (4,61,62), and
in experimental animal models where drug-associated cues
have been shown to increase glucose uptake or c-fos synthe-
sis in the amygdala (101,102).

Prefrontal and Anterior Cingulate Cortex

As outlined above, there is an enduring change in dopamine
transmission in the PFC associated with repeated adminis-
tration of some drugs of abuse. Efforts to deduce the effect
of dopamine transmission in the PFC have generally re-
vealed that the actions of dopamine are state-dependent.
This is reflected by distinct electrophysiologic effects of do-
pamine when pyramidal cells in the cortex are relatively
active or inactive (e.g., up or down state) and by a biphasic
dose–response effect of dopamine agonists and antagonists
on cognition (103,104). Although the effects of dopamine
are state-dependent, dopamine clearly has the capacity to
modulate excitatory glutamatergic projections to the nu-
cleus accumbens and VTA (105–107). Thus, the long-term
alterations in PFC dopamine transmission by repeated drug
use change corticofugal glutamate transmission.
A variety of emerging data indicate that glutamatergic

projections to the nucleus accumbens and VTA may be
altered by repeated drug administration and that this is con-
sequential in behaviors associated with addiction. Thus, re-
peated cocaine administration elicits a reduction in basal
extracellular glutamate in the nucleus accumbens, whereas
subsequent drug exposure results in enhanced glutamate
release in both the nucleus accumbens and VTA that de-
pends on dopamine receptor stimulation (108–110). More-
over, the blockade of glutamate receptors in the nucleus
accumbens inhibits the expression of behavioral sensitiza-
tion to cocaine, as well as the capacity of systemic cocaine
to elicit drug craving using a reinstatement model of craving
in rodents (108,111). Also, lesions of the PFC have been

shown to block behavioral sensitization to cocaine and mor-
phine, as well as increase extracellular glutamate produced
by cocaine in cocaine-pretreated subjects (13,112). Taken
together with the imaging data in human cocaine addicts
showing an association between cocaine craving and meta-
bolic activity in the anterior cingulate cortex (4,61), the
data to date point toward a critical role in addiction for
neuroadaptations in glutamate transmission in the projec-
tion from the PFC to themesoaccumbens dopamine system.
Moreover, recent studies may indicate a prepotent role in
cocaine addiction for glutamate over dopamine in the nu-
cleus accumbens, although a role for this projection has
been more difficult to demonstrate for some drugs of abuse,
notably amphetamine (59).

Amygdala-Thalamo-Cortical Circuit

There is substantial evidence for a role by the amygdala in
mediating the conditioning of behavior to obtain a natural
or drug reward (99,113,114). Thus, pharmacologically in-
hibiting neurotransmission within the amygdala prevents
the capacity of a cocaine cue to elicit drug-seeking behavior
in rodents, and amygdala lesions blunt the expression of
conditioned place preference produced by many drugs of
abuse. There are two likely connections from the amygdala
that are mediating the relationship between learned associa-
tions and rewarding stimuli. The first is an interconnected
relationship with the amygdala, mediodorsal thalamus, and
PFC. Various data suggest that this subcircuit is critical for
the formation of learned associations with rewarding stimuli
(115). The second connection is among the amygdala,
VTA, and nucleus accumbens. Although this subcircuit is
important in unconditioned responses to most drugs of
abuse (see the preceding), many studies indicate that it is
critical for the expression of behaviors elicited by condi-
tioned stimuli to obtain reward, as well as cue-induced drug
relapse (114). Although both circuits probably contribute
to stimulus-induced drug relapse, the relative role of each
may depend on the type of stimulus. For example, relapse
precipitated by a low dose of drug, especially a drug known
to activate dopamine transmission, is likely to involve the
dopamine projection from the VTA to the amygdala,
whereas cue-induced relapse may be more involved with the
influence the amygdala brings to bear on the thalamocorti-
cal projection (99,111).

CONCLUSION AND FUTURE DIRECTIONS

The last decade has witnessed the emergence of a number of
seminal developments in our understanding of the circuitry
mediating addiction. Primary among these is that there ex-
ists substantial overlap in the circuits mediating behavioral
responses to non-drug and drug reward (Figs. 95.2 and
95.4), and that the pathology of addiction arises to a great
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extent from neuroplasticity within this common circuit.
The second critical development is that neuroplasticity to
drug reward arises from an interaction between the molecu-
lar site of drug action and environmental stimuli associated
with the effect of the drug. In this way, cortical and allocorti-
cal circuitry important in learning and memory is recruited
and undergoes neuroplastic alterations in response to drugs
of abuse. The studies outlined in this chapter describe
changes in neurotransmission and cell signaling that may
be critical in changing the functional status of the circuit
illustrated in Fig. 95.2. Accompanying these intracellular
and neurochemical neuroadaptations, it is also important
to note the recent studies of Robinson and coworkers (116,
117), which show that akin to normal learning, repeated
exposure to psychostimulants or opioids produces morpho-
logic changes in dendritic branching and synaptic connec-
tivity in many nuclei (Fig. 95.2). Although neurobiologists
are well engrossed in identifying neuroplastic changes in
various nuclei (Fig. 95.2), there is a lag in understanding
how these alterations result in a change in the function of
the circuit as a whole. The circuit shown in Fig. 95.2 is
highly interconnected and topographically organized (35,
36). Thus, a change in the function of a cell group in one
nucleus is likely to impact on the status of neurons in other
nuclei. Predicting and experimentally evaluating these sec-
ondary interactions and how they determine the appearance
of addictive behavior will be the arena of study over the
next decade. This arena can be approached from molecular
technologies at one end and imaging studies at the other.
The imaging experiments help to define functional subcir-
cuits within the overall reward and learning circuitry,
whereas the molecular studies can identify specific cellular
neuroadaptations. Using pharmacologic and genetic manip-
ulations these specific cellular neuroadaptations can be eval-
uated in vivo animal models of addiction to determine the
relevance of the changes in addictive behaviors and on cellu-
lar adaptations in interconnected nuclei within the reward
and learning circuits.
As an initial foray into integrative thinking it is becoming

clear that there is a distinction between the effects of acute
drug and repeated administration on the circuit shown in
Fig. 95.2. In the analysis of the literature outlined in the
preceding, this distinction was characterized as a transition
from dopamine-dependent effects to behaviors more depen-
dent on cortical glutamate transmission. Although this is
an oversimplification based on too few experiments using
too few classes of drugs of abuse, it is similar to the physio-
logic neuroadaptive processes associated with the develop-
ment of habitual behavioral responses to previously novel
motivationally relevant natural stimuli (Fig. 95.4). More-
over, involvement of cortical and allocortical brain regions
in addiction imparts a mandate that future researchers to
consider the neurobiology of learning and memory as an
equal partner with drug neuropharmacology in developing
effective therapy for addiction.
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