
8

NEUROGENESIS IN ADULT BRAIN

FRED H. GAGE
AND HENRIETTE VAN PRAAG

HISTORIC PERSPECTIVE

The idea that the adult brain retains the capacity to generate
new neurons has been proposed several times over the last
40 years, and in each case both conceptual and technical
constraints have led to resistance. Joseph Altman first re-
ported that some dividing cells in the adult brain survived
and differentiated into cells with morphology similar to
neurons using tritiated thymidine autoradiography (1).
Over the subsequent years he and his colleagues confirmed
these initial observations and focused on the few areas where
neurogenesis was apparent in the adult, at the light micro-
scopic level, while systematically documenting the birth
dates of neurons throughout the brain during development
(2). When contrasting adult neurogenesis with the extensive
neurogenesis in development, adult neurogenesis seemed
almost like an epiphenomenon. The continued skepticism
surrounding adult neurogenesis and the absence of defini-
tive phenotypic markers limited the development of the
field. In the mid-1970s and early 1980s Michael Kaplan
reexamined the initial observations using the electron mi-
croscope and added substantial confidence that not only
could neurogenesis occur in the adult brain, but also that
the cells appear ultrastructurally, similar to sister cells in the
dentate gyrus of the hippocampus, one of the structures
shown to be neurogenic (3). In the mid-1980s, Fernando
Nottebohm and his student Steve Goldman further stimu-
lated this fledgling field by showing that songbirds experi-
ence a seasonal cell death and neurogenesis in a region of
the brain important for song production (4). They have
continued to reveal more about the environment and molec-
ular regulators of this process in the adult avian brain (5).
Despite these observations of neurogenesis in the adult
brain, confusion over the mechanism origin of cell genesis
in the adult brain persisted. In the early 1990s a series of
papers in the adult mouse and rat revealed that cells with
stem cell properties could be isolated and expanded in cul-
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ture. Under a variety of culture conditions with different
factors, these isolated cells can be induced to differentiate
into glia and neurons (6–9). This later observation provided
a mechanism for the neurogenesis in the adult. Mature com-
mitted neurons were not dividing, but rather a population
of immature stem-like cells exists in the brain and it is likely
that it is the proliferation and differentiation of this popula-
tion that is resulting in neurogenesis. With this conceptual
framework the original statement by Cajal that, ‘‘Once de-
velopment was ended, the fonts of growth and regeneration
of the axons and dendrites dried up irrevocably. In adult
center, the nerve paths are something fixed and immutable:
everything may die, nothing may be regenerated,’’ still holds
true for most areas of the adult brain. The new lesson that
we have learned is that development never ended in some
areas of the brain.

CHARACTERIZATION OF CELL GENESIS
IN VIVO

Areas of Neurogenesis

Neurogenesis is a process that includes cell division, migra-
tion, and differentiation. There appear, at present, to be
only two areas of the brain where stems cells initially reside
and proliferate prior to migration and differentiation. Those
areas are the lateral subventricular and subgranular zones of
the dentate gyrus. The exact cell that corresponds to the
initiating stem cell in the lateral ventricle is a point of con-
tention. One view is that this cell is the ependymal cell
facing the ventricle (10), whereas an alternative view is that
a glial population one cell layer in from the ependyma are
the stem cells (11). In any case, after cell division one of
the stem cells begins to differentiate and migrate in what
Alvarez-Buylla has described as ‘‘chain migration’’ along the
rostral migratory stream toward the olfactory bulb where
they differentiate into interneurons in the bulb (12). This
process continues throughout life; the functional impor-
tance and consequences of this process are not understood.
The stem cell in the adult mammalian subgranular zone
of the dentate gyrus is likely an ectopically displaced cell
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originating from the developing ventricular zone. It remains
formally possible that a more primitive cell exists elsewhere
in the adult brain in a quiescent state, and migrates to the
dentate gyrus where the cells begin to divide. However,
from the subgranular zone, one of the progeny migrates
into the granule cell layer once the cells divide; there the
majority become neurons with axons extending to the CA3
pyramidal neurons and receiving synaptic connections. The
function of these newly born cells is being investigated.

Although these are the two principal areas where neuro-
genesis occurs in the mammalian brain, cell genesis occurs
throughout the adult brain including cortex, optic nerve,
spinal cord, and many brainstem and forebrain structures.
To date the function of this cell genesis in the normal intact
brain and spinal cord is not known, but some of these new
cells can become glial cells (13). A clear challenge for the
future is to document all the areas of the adult brain where
cell genesis continues, and to understand the normal func-
tion as well as the factors that regulate this process.

Mammalian Species in Which Adult
Neurogenesis Is Documented

The first studies demonstrating adult neurogenesis were in
the rat. Subsequently, rabbit and cat were shown to exhibit
similar characteristics, although little additional work has
been done in those animals since the original publications
(14,15). It was not until 1997 that Kempermann and associ-
ates showed the mice retain neurogenesis and that signifi-
cant genetic variability exists among mouse strains (16).
These findings, together with the important role for envi-
ronmental stimulation as a regulator of neurogenesis, have
placed adult neurogenesis as paradigm for examining the
interactions of nature and nurture (17,18). Although there
was debate in the mid-1980s as to whether nonhuman pri-
mates retained adult neurogenesis, a series of papers by
Fuchs and associates beginning with tree shrew followed by
marmosets and finally with Rhesus monkeys demonstrated
and confirmed that neurogenesis in occurs in adult nonhu-
man primates (19,20). Recently, Gould presented data sug-
gesting that neurogenesis occurs in the adult primate frontal
cortex and concluded that the cells are derived from the
subventricular zone where they migrate to specific cortical
regions of the adult primate brain. This observation awaits
confirmation (21). One of the markers for determining cell
division is bromo-deoxyuridine (BrdU); a traceable analogy
of uridine, which in incorporated into the genome of, cells
undergoing cell division. Administering BrdU and then ex-
amining cell proliferation in tumor biopsies is occasionally
used to monitor tumor progression in patients with cancer.
Because BrdU is a small soluble molecule, it is distributed
throughout the body including the brain, thus can be a
marker for cell and neurogenesis in humans. In 1998 Eriks-
son and colleagues (22) reported that in five of the cancer
patients they examined who received BrdU at between 15
days and over 2 years early, all of them showed neurogenesis

FIGURE 8.1. Birth of new neurons in the adult hippocampus has
been documented in a variety of species, including rodents and
humans. See color version of figure.

as revealed by colabeling of BrdU with markers of mature
neurons in the dentate gyrus. Together these studies clearly
demonstrate that neurogenesis, at least in the dentate gyrus,
is a process that persists throughout life and in all mamma-
lian species (Fig. 8.1). The extent to which or whether neu-
rogenesis can occur in other brain areas remains an area of
intense investigation.

PROPERTIES OF STEM CELLS IN VITRO

CNS Areas from Which Stem Cells Can Be
Isolated

Neural stem cells can be derived from the adult brain and
propagated in vitro (6–8,10,11,23–26). Ongoing adult
neurogenesis, however, has only been documented convinc-
ingly in two brain areas, the subventricular zone/olfactory
system and the dentate gyrus of the hippocampus. Interest-
ingly, stem cells are found not only in these regions, but
also have been isolated from areas that are non-neurogenic
such as the septum, striatum (27), spinal cord (28), cerebral
cortex, corpus callosum, and optic nerve (29) and eye (30).
In culture, these cells are multipotent and can give rise to
neurons and glia. However, cells isolated from areas outside
of the hippocampus and subventricular zone require high
levels of FGF-2 in order to give rise to neurons, rather than
only glial cells (29). These findings suggest that either differ-
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ent populations of stem cells exist in the nervous system
or that they require unique culture conditions to become
multipotent. Alternatively, the cells isolated from different
CNS regions may already be committed toward a specific
lineage. Indeed, there are no antigenic markers that allow
unambiguous identification of stem cells in the nervous sys-
tem. In the subventricular zone, stem cells are suggested to
divide slowly, whereas and their offspring, progenitor cells,
may divide more frequently (31). Stem cells in this area
have been suggested to ependymal cells (10) or a subclass
of glial cells in the subependymal zone (11). The location
and identity of the hippocampal stem cell remains to be
determined.

Factors That Affect Proliferation and
Differentiation of Stem Cells In Vitro

A variety of cytokines, neurotrophins, and conditioned
media are used to culture neural progenitor cells (32–34).
The two major factors are EGF and FGF. Progenitor cells
responsive to EGF have been isolated and cultured from
adult mouse subventricular zone (6,7,31). FGF-2 has been
found to be mitogenic for adult neural progenitors from
brain and spinal cord (9,27,28). FGF-2, however, is mem-
ber of a family of 10 related, but genetically and functionally
distinct polypeptides. Among those, only FGF-2 and FGF-
4 are mitogens for neural progenitor cells. Moreover, a com-
parison of amino acid sequences between the FGFs revealed
a striking similarity between a 10-amino acid sequence of
FGF-2 and FGF-4. This 10-amino acid sequence was been
shown to elicit the mitogenic effects of FGF-2 and FGF-4
on neural progenitor cells, whereas similar regions in FGF-
1 and -5 were found to be inactive (35).

Several factors have been found to be important for neu-
ronal differentiation in cultured progenitor cells. In particu-
lar, retinoic acid and cAMP increase neuronal differentia-
tion (27,36,37). In addition, neurotrophins such as NGF,
BDNF, and NT-3 have been found to influence neuronal
differentiation and transmitter phenotype (34,37,38),
whereas CNTF can regulate glial differentiation of precur-
sor cells (39).

Transplanted Cells and Responses to
Local Cues

Progenitor cells may play an important role in brain or
spinal cord repair. In particular, grafting of progenitor cells
into degenerated or injured areas may be used to replace
cells that are no longer functional. The phenotype and func-
tion that these cells acquire appears to be very much depen-
dent on the specific environment into which they are trans-
planted. Thus, cultured hippocampal progenitors become
granule cell neurons when grafted into the dentate gyrus,
tyrosine hydroxylase, and calbindin positive neurons in the
olfactory bulb after grafting into the rostral migratory

stream (40). In addition, after implantation into the devel-
oping retina these cells showed properties of several types
of retinal neurons (37). Moreover, progenitors isolated from
a non-neurogenic area such as the spinal cord, acquired the
morphologic characteristics of granule cell neurons when
grafted into the dentate gyrus, and had a glial phenotype
when grafted back in to the spinal cord (41). These studies
suggest that neural stem cells derived from the adult mam-
malian brain retain multipotentiality. Recent research sug-
gests that neuronal stem cells are multipotent outside the
CNS as well. It was reported that neural progenitor cells
repopulate experimentally depleted bone marrow and re-
constitute the hematopoietic system (42). It remains to be
determined what the local cues are, that are driving the
neuronal precursor cells to acquire such specific fates when
transplanted in vivo.

REGULATION OF PROLIFERATION AND
DIFFERENTIATION IN VIVO

The mechanisms that generate new granule cells in the den-
tate gyrus are poorly understood. A variety of environmen-
tal, behavioral, genetic, neuroendocrine, and neurochemical
factors can regulate adult neurogenesis. Two critical pro-
cesses that lead to neurogenesis, cell proliferation and the
subsequent differentiation and survival of newborn neurons,
can undergo differential regulation by these factors (Table
8.1).

Genetics

In 1997 Kempermann and colleagues found that strains of
mice differ with respect to rate of cell division and amount
of cell survival and neurogenesis. Comparisons were made
among C57BL/6, BalB/c, CD1, and 129/SVJ strains. Pro-
liferation was found to be highest in C57BL/6 mice; how-
ever, net neurogenesis was highest in the CD1 strain. 129/
SVJ produced relatively more astrocytes and fewer neurons
than other strains (16). The degree to which environmental,
behavioral, and biochemical factors can affect cell prolifera-
tion and neurogenesis may also differ depending on the
species or strain of animal involved. Indeed, exposure to an
enriched environment (18) had different effects on two of
these strains of mice, C57BL/6 and 129/SVJ, respectively.
In C57BL/6 mice enrichment promoted the survival of pro-
genitor cells but did not affect proliferation, whereas the
net increase in neurogenesis in 129/SVJ mice was accompa-
nied by a twofold increase in proliferation (18). Thus, strain
differences not only influence the baseline rate of adult hip-
pocampal neurogenesis, but also influence how adult hippo-
campal neurogenesis is regulated in response to environ-
mental stimulation. Indeed, proliferation, survival and
differentiation of progenitor cells and their progeny are each
separately influenced by inheritable traits and are not uni-
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TABLE 8.1. REGULATION OF CELL PROLIFERATION AND NEUROGENESIS IN
THE DENTATE GYRUS IN VIVO

Factor Proliferation Glia Neurons References

FGF t t t 44,46

EGF t G g 44

IGF G t G 47

Estrogen G t t 67

Serotonin G n.d. n.d. 73,74,75

Glutamate g n.d. n.d. 65,70

MK801 G n.d. G
Enriched environment t t G 17,18,80

Wheel running G t G 55,56

Learning t n.d. G 83

t t t 56

Stress g n.d. n.d. 60,61

Glucocorticoids g n.d. n.d. 57,58,59,64

Adrenalectomy G n.d. G
Stroke G n.d. G 90,91

Epilepsy/seizures G n.d. G 85,86,87,88,89,100

Vitamin E deficiency n.d. n.d. G 99

Aging g n.d. g 63,64,81

formly up-regulated in response to environmental stimula-
tion.

Growth Factors

During development, growth factors provide important ex-
tracellular signals for regulating the proliferation and fate
determination of stem and progenitor cells in the CNS (43).
Several studies have been carried out to investigate progeni-
tors in the adult brain respond to such growth factors. Intra-
cerebroventricular infusion of EGF and FGF-2 in adult rats
increased proliferation in the subventricular zone (44). Nei-
ther EGF nor FGF enhanced proliferation in the subgranu-
lar zone of the dentate gyrus. With regard to differentiation,
EGF promoted glial differentiation, whereas FGF-2 did not
influence phenotype distribution (44). In another series of
experiments, FGF was administered systemically during the
first postnatal weeks and in the adult rat. Cell proliferation
was increased the dentate gyrus of infant rats but not in the
adult hippocampus (45,46). Recent research has shown that
intracerebral infusion of IGF increases both cell prolifera-
tion and neurogenesis in hypophysectomized rats (47). In
songbirds, seasonal regulation of adult neurogenesis de-
pends on testosterone levels that mediate their effect
through BDNF (48). In addition, IGF-1, FGF mRNA, and
BDNF mRNA are elevated in rodents by exercise (49–52).

Expression of BDNF (53) and GDNF is increased by expo-
sure to an enriched environment (54). Both running and
enrichment increase net neurogenesis (17,55,56). The ef-
fects of intracerebral administration of trophins such as
BDNF, NT-3, and GDNF remain to be determined; how-
ever, it appears that growth factors do play a role in in vivo
regulation of proliferation and neurogenesis in the adult
hippocampus. Better understanding of their mechanisms of
action may lead to therapeutic application of these factors
after brain injury or disease.

Neuroendocrine Factors and Stress

McEwen and Gould at Rockefeller University first in-
vestigated the effects of glucocorticoids or stress on adult
hippocampal neurogenesis. The initial study reported that
adrenalectomy, which leads to a reduction in serum gluco-
corticoid levels, elicits cell division in the dentate gyrus.
This effect could be reversed by corticosterone replacement
(57). Conversely, stress or increased levels of glucocorticoid
hormones inhibit proliferative activity in the dentate gyrus
(58,59). For example, administration of high levels of corti-
costerone diminishes cell division in the adult rat hippocam-
pus (59). In addition, exposure of a rat to the odor of a
natural predator (fox), causing stress and elevated corticoste-
rone levels, transiently suppressed cell proliferation in the
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adult rat dentate gyrus (60). Furthermore, exposure of mar-
moset monkeys to a resident intruder causes stress and re-
sults in a decrease in cell proliferation (61). In a recent
study, rats that are highly reactive to novelty and exhibit a
prolonged corticosterone secretion in response to novelty
and stress were found have reduced dentate gyrus cell prolif-
eration (62). Aging is accompanied by a reduction in neuro-
genesis (63), which may be caused in part by elevated gluco-
corticoid levels. Adrenalectomy in aged rodents has been
shown to increase cell proliferation and neurogenesis (64).
The effects of glucocorticoids on cell genesis appear to be
mediated via a downstream effect on NMDA glutamate
receptors (65). Thus, glucocorticoids and stress associated
with increased corticosterone secretion inhibit cell genesis in
the hippocampus. Enhanced stress or glucocorticoid levels
therefore may impair hippocampal function, and lead to
deficits in learning and memory. In contrast to the glucocor-
ticoids, other steroid hormones, such as testosterone, en-
hance neurogenesis in birds (66), whereas estrogen results
in a transient increase in proliferation in rats (67). Thyroid
hormone can affect neuronal differentiation of hippocampal
progenitor cells in vitro (27). In vivo, hypothyroidism inter-
feres with cell migration (68), but does not affect postnatal
cell proliferation (69).

Neurotransmitters

Neurotransmitters have also been suggested to play a role
in adult dentate gyrus neurogenesis. Systemic injection of
glutamate analogs inhibits birth of new cells, whereas an
antagonist, such as MK801, enhances cell division (65,70).
Recently, another class of neurotransmitters, the mono-
amines, has been suggested to be important as well. Pro-
longed administration of fluoxetine, as well as therapeutic
agents acting on norepinephrine and dopamine receptors,
and electroconvulsive shock enhance the number of BrdU-
positive cells in rats (71–73). Acute administration of fluox-
etine did not affect cell genesis (73). Grafting of fetal raphe
neurons also stimulated granule proliferation in the hippo-
campus, whereas embryonic spinal tissue had no effect (74).
Furthermore, depletion of serotonin reduces stem cell pro-
liferation in the dentate gyrus (75). It is possible that these
effects are mediated by the 1A receptor, because administra-
tion over 4 days of a specific 1A receptor antagonist (WAY)
reduced basal rate of cell proliferation (Jacobs et al., unpub-
lished observations). Taken together, these findings suggest
that induction of cell proliferation is dependent on chronic
administration of monoamines, consistent with the thera-
peutic time course for antidepressant treatments. Indeed,
these studies have led to the hypothesis that therapeutic
interventions that increase serotonergic transmission may
act in part by augmenting dentate neurogenesis, promoting
recovery from depression (76,77). It is of interest to note
in this context that voluntary exercise increases cell prolifera-
tion (55), enhances monoamine levels and has an antide-

pressant effect (78). Thus, monoamines can affect cell gene-
sis in the dentate gyrus. The receptors and mechanisms by
which they exert their effects as well as possible interactions
with other classes of neurotransmitters and/or growth fac-
tors remain to be determined.

Experience

As mentioned, stress (19) and depression may reduce the
birth of new neurons. In addition, the aging process is ac-
companied by a decrease in neurogenesis (63); however,
there are several environmental and behavioral interventions
that can enhance neurogenesis (Fig. 8.2). In 1997 Kem-
permann and colleagues carried out the first of these studies
comparing mice living under standard conditions with those
housed in an enriched environment (17). Exposure to an
enriched environment, consisting of larger housing; toys;
and more opportunity for social stimulation, physical activ-
ity, and learning than standard laboratory conditions (79),
resulted in a significant increase in neurogenesis, without
affecting cell proliferation in mice and rats (17,80). Subse-
quent studies showed that the age-related decline in neuro-
genesis could be attenuated by enrichment (81). In addition,
it was shown that enrichment inhibits cell death by
apoptosis and prevents seizures (54). Moreover, it was deter-
mined that the most important components of enrichment
are increased physical activity and possibly learning. Similar
to enrichment, voluntary exercise in a running wheel in-
creases net neurogenesis (55). In addition, running increases

FIGURE 8.2. Proliferation and neurogenesis in the dentate
gyrus. Photomicrographs of BrdU-positive cells 1 day (a–c) and 4
weeks (d–f) after the last injection in control (a,d), running (b,e),
and enriched (c,f) mice. Confocal images of BrdU positive cells in
control (g), running (h), and enriched (i) mice, 4 weeks after the
last injection. Sections were immunofluorescent triple labeled for
BrdU (red), NeuN indicating neuronal phenotype (green), and
s100� selective for glial phenotype (blue). Orange (arrow, new-
born neuron) is red � green. Scale bar is 100 �m. See color version
of figure.
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cell proliferation in the dentate gyrus (55). It is interesting
to note that enrichment and running had the same net effect
on neurogenesis, but that running increased proliferation,
whereas enrichment did not. Thus, not only the genetic
factors mentioned, but also different environmental and be-
havioral factors can have differential effects on cell prolifera-
tion and neurogenesis. Others reported that hippocampus-
dependent tasks, such as spatial learning in the Morris water
maze (82), increases the number of surviving BrdU-positive
cells (83,84); however, in our laboratory there was no effect
of learning on proliferation or survival of newborn hippo-
campal cells (55).

Apart from these rather innocuous manipulations, there
are several pathologic events that can affect granule cell
number. Damage to the hippocampus by kindling (85,86),
seizures (87–89), ischemia (90,91), or mechanical lesions
(92) enhances proliferation. Thus, both normal and patho-
logic circumstances can affect cell genesis. Whether in-
creased proliferation is beneficial for function or may repre-
sent compensation for lost cells and/or function remains to
be determined.

FUNCTIONAL SIGNIFICANCE OF
NEUROGENESIS

Adult neurogenesis has been reported to exist over more
than three decades, and to occur in a variety of species,
including humans; however, the functional role of these
new cells has yet to be determined. Given that the hippo-
campus is important for some forms of learning and mem-
ory and related mechanisms of neural plasticity such as long-
term potentiation (LTP), much of the research has focused
on finding a relationship between neurogenesis and memory
function.

Behavior

It was found in several studies that animals living in an
enriched environment not only had more new neurons, but
also performed better on a spatial learning task (17,18,80).
In addition, mice that were housed with a running wheel
had more new neurons than their sedentary counterparts
(55) and performed better on the water maze task (56). As
mentioned, neurogenesis declines with aging (63); however,
exposure to an enriched environment can restore some of
the neurogenesis and improve performance on the water
maze task in aging mice (81). Whether voluntary exercise in
a running wheel would yield similar results in aged animals
remains to be determined.

Electrophysiology

Although we can identify new granule cells using histologic
and morphologic techniques, the question remains whether

FIGURE 8.3. The three major areas of the hippocampus are the
dentate gyrus, CA3, and CA1. The perforant pathway (1) from
the subiculum forms excitatory connections with granule cells of
the dentate gyrus. Both newborn and existing granule cells give
rise to axons that form the mossy fiber pathway (2). This pathway
projects to area CA3 pyramidal cells. The CA3 cells project to CA1
pyramidal cells by Schaffer collaterals. Within the hippocampal
system, only the dentate gyrus gives rise to new neurons in the
adult brain. These cells proliferate, migrate, and differentiate
into mature neurons in the dentate gyrus (see box). See color
version of figure.

these cells are physiologic functional and if so, how similar
or different are they from existing granule cells (Fig. 8.3).
Moreover, what could be the functional significance of their
(possible) neuronal activity? It has been shown that new
hippocampal granule cells send axons along the mossy fiber
tract to CA3 as do all other granule cells (93–95) and that
they receive synaptic contacts (93). A recent study compared
LTP, a physiologic model of certain forms of learning and
memory (96) in the dentate gyrus, and CA1 in hippocampal
slices from running and control mice. LTP amplitude was
selectively enhanced in the dentate gyrus of running mice
(56). It is possible that the newborn granule cell neurons
play a role in increased dentate gyrus LTP because running
increases learning and neurogenesis. Although the new cells
are a small percentage of the granule cell layer, the possibility
exists that they have greater plasticity than do mature cells.
Indeed, dentate gyrus LTP last longer in immature rats than
adults (97); however, in order to test this hypothesis it is
necessary to record activity from individual new granule
cells. In a recent study granule cells from the inner and
outer layer of the dentate gyrus were compared. The inner
layer cells were considered to be ‘‘young’’ cells and the outer
layer ‘‘old’’ cells. The researchers found that the putative
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young cells had a lower threshold for LTP and were unaf-
fected by GABA-A inhibition, suggesting enhanced plastic-
ity in the ‘‘young’’ cells (98); however, the problem with this
study is that the definition of ‘‘young’’ cells is ambiguous. In
our studies we have found newly generated cells throughout
the granule cell layer. Moreover, the only way to be certain
that a cell is a newborn neuron is by labeling the cell when
it divides with a mitogenic marker. Ideally, recordings
would be made from such a labeled cell and compared with
preexisting neurons.

In summary, adult hippocampal neurogenesis appears to
be associated with memory function. Indeed, performance
on a learning task is better in animals in which neurogenesis
is stimulated, such as by running or enrichment, than in
controls. This link may between neurogenesis and behavior
may be causal rather than correlational, given that electro-
physiologically measurable changes occur in the brain region
where adult neurogenesis occurs.

POTENTIAL THERAPEUTIC IMPLICATIONS

Several areas of interest emerge when considering the thera-
peutic potential for neurogenesis. First, a strategy that takes
advantage of the ability of stem cells from the adult brain
to be isolated and induced to divide in culture opens the
opportunity for cellular transplantation to replace cells that
have died because of injury or disease. Although evidence
supports that ability of adult stem cells to survive grafting
to the adult brain, the fate of the grafted cells appears to
be dictated by the local environment. Thus, in order to
accurately replace cells in damaged areas of the brain signifi-
cant new information about the cellular and molecular
mechanisms that control fate decisions is required in order
to ‘‘train’’ the immature cells in culture to respond to the
unique features of each of the environment to which they
are grafted.

A second strategy emerges as a direct result of the fact
that the adult brain retains stem cells in situ throughout
life. By understanding the internal factors, molecules and
mechanisms as well as the external stimuli and influences
that control and regulate each of the steps in neurogenesis
in vivo, eventually the potential of the endogenous cells
could be harnessed. To this end, cell number could be am-
plified, direction of migration could be targeted, and finally
terminal fate could be specified to the extent that a form
of ‘‘self-repair’’ could be induced or orchestrated in the adult
damaged brain. In all cases a more complete understanding
the cellular and molecular events directing neurogenesis is
a prerequisite for the use of this process in rational strategies
for therapy.
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