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HORMONAL AND GENDER
INFLUENCES ON MOOD REGULATION

DAVID R. RUBINOW
PETER J. SCHMIDT

CATHERINE A. ROCA

HISTORY AND MECHANISMS

Within the past 20 years, the putative role of gender and
gonadal steroids in mood regulation has been transformed
from the staple of stereotype to a critical locus of research
in clinical neuroscience. This transformation reflects the im-
pact of explosive advances in molecular endocrinology and
basic neuroscience, both of which suggest the myriad and
dramatic neuroregulatory effects of gonadal steroids. Al-
though direct isomorphs between basic mechanisms and
clinical observations are for the most part absent, our bur-
geoning knowledge of the cellular and central nervous sys-
tem effects of gonadal steroids is offering new models for
understanding the relevance of gender and gonadal steroids
in mood regulation. In this chapter, we review some of the
major findings in reproductive neuroscience, emphasize the
context dependency of many of these findings, and suggest
that similar contextual effects underlie the inability to dem-
onstrate uniform effects of gender or gonadal steroids on
mood and behavior.

Reproductive hormones have played a central historical
role in the development of our understanding of the effects
of hormones on brain and behavior. More than 2,000 years
ago, Aristotle, in his biological treatise Historia Animalium,
observed that castration of immature male birds prevents
the development of characteristic male singing and sexual
behavior (1). One hundred fifty years ago, Berthold (2)
successfully transplanted testes in castrated roosters and re-
versed their hypogonadal symptoms, demonstrating that re-
productive organs possess factors that can dramatically alter
physiology and behavior. These observations culminated in
the claims by nineteenth century organotherapists (e.g.,
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Brown-Sequard) that the administration of ovarian or testic-
ular extracts could treat a variety of mood disorders in hu-
mans, ranging from depression to the anergy of senescence
(3,4). In the 1920s and 1930s, the active gonadal sub-
stances—testosterone, estradiol, and progesterone—were
isolated and characterized.

In 1962, Jensen and Jacobsen (5) provided evidence that
the effects of estradiol are mediated through a specific intra-
cellular hormone-binding protein, the estrogen receptor (a
concept originally proposed by Langley in 1905), and by
1966, the estrogen receptor became the first hormone recep-
tor to be isolated and identified (6). An elegant scheme for
the cellular effects of hormones was subsequently elabo-
rated. As lipophilic factors, steroid hormones would diffuse
into cells, where they would bind the intracytoplasmic re-
ceptor (in contrast to the membrane-bound receptors of
neurotransmitters and peptide hormones); the receptor pro-
tein would then be phosphorylated to cause dissociation of
a heat shock protein and uncapping of the DNA binding
domain of the receptor, which would result in binding of
the receptor (frequently after dimerization) to a response
element on the DNA, transcription of messenger RNA
(mRNA), and finally translation of the mRNA into proteins
in the cell cytoplasm. Because an enormous array of proteins
relevant to neural transmission (e.g., neurotransmitter syn-
thetic and metabolic enzymes, neural peptides, receptor pro-
teins, signal transduction proteins) were observed to be reg-
ulated by gonadal steroids, this ‘‘genomic’’ mechanism
promised to explain at a cellular level many of the effects
of reproductive steroids observed at the level of the organ-
ism. In the past 15 years, the elegant simplicity of this geno-
mic mechanism has given way to a model for the actions of
reproductive steroids that is more comprehensive, powerful,
and complex. Examination of this complexity promotes
both an appreciation for the rich neuroregulatory potential
of reproductive steroids and a means for understanding the
diverse and wide ranging behavioral responses to alterations
in reproductive steroid levels.
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First, as the mechanics of transcription were elucidated,
it became clear that activated steroid receptors influence
transcription not as solitary agents but in combination with
other intracellular proteins (7). These protein–protein in-
teractions were such that an activated receptor might en-
hance, reduce, initiate, or terminate transcription of a par-
ticular gene solely as a function of the specific proteins with
which it interacted (and the ability of these proteins to en-
hance or hinder the recruitment of the general transcription
factor apparatus). The expression of these proteins—co-
regulators (co-activators or co-repressors)—proved to be tis-
sue-specific, and so suggested a means by which a hormone
receptor modulator (e.g., tamoxifen) could act like an (estro-
gen) agonist in some tissues (e.g., bone) and like an (estro-
gen) antagonist in others (e.g., breast) (8,9). Another group
of intracellular proteins, the co-integrators, provided a
means by which classic hormone receptors could bind to
and regulate sites other than hormone response elements
[e.g., estrogen receptor (ER) or glucocorticoid receptor
(GR) binding cyclic adenosine monophosphate (cAMP) re-
sponse element binding (CREB) protein and, subsequently,
the activator protein 1 (AP-1) binding site)] (10), and com-
petition for co-integrator or other transcriptional regulatory
proteins was demonstrated as a mechanism by which even
ligand-free hormone receptors could influence (e.g., squelch
or interfere with) the transcriptional efficacy of other acti-
vated hormone receptors (11). Thus, both the intracellular
hormone receptor environment and the extracellular hor-
mone environment might dictate the response to hormone
receptor activation.

Second, the hormone receptors were found to exist in
different forms. For example, isoforms of the progesterone
receptor, PRA and PRB (the latter of which contains a 164-
amino acid N-terminal extension), have different distribu-
tions and biological actions (12). As another example, two
separate forms of the estrogen receptor, ER� and ER�, are
encoded on different chromosomes (6 and 14, respectively)
and have different patterns of distribution in the brain, dif-
ferent affinity patterns for certain ligands, and a range of
different actions (including those created by ER heterodim-
ers) (13–15). Further, a variant of ER�, ER�, is expressed
in the brain, where it can form heterodimers with the ER� or
ER� receptors (16) and inhibit their transcriptional actions
(17).

Third, a variety of substances (e.g., nerve growth factor,
insulin) are capable of activating a steroid receptor even in
the absence of ligand (18,19). This crosstalk is exemplified
by the ability of dopamine to induce lordosis by activating
the PR (20,21).

Fourth, the relatively slow ‘‘genomic’’ effects of gonadal
steroids have been expanded in two dimensions: time, with
a variety of rapid (seconds to minutes) effects observed, and

targets, which now include ion channels and a variety of
second-messenger systems. For example, estradiol increases
the firing of neurons in the cerebral cortex and hippocampus
(CA1) (22) and decreases firing in medial preoptic neurons
(23). The activity of membrane receptors like the glutamate
and �-aminobutyric acid (GABA) receptors is acutely mod-
ulated by gonadal steroids (estradiol and the 5-� reduced
metabolite of progesterone, allopregnanolone, respectively)
(24,25). Estradiol binds to and modulates the maxi-K potas-
sium channel (26), increases cAMP levels (27), activates
membrane G proteins (G�q, G�s) (28), inhibits L-type cal-
cium channels (via nonclassic receptor) (29), and immedi-
ately activates the mitogen-activated protein kinase (MAPK)
pathway (albeit in a receptor-mediated fashion) (30). The
effects observed are tissue- and even cell-specific (e.g., estra-
diol increases MAPK in neurons but decreases it in astro-
cytes (31) (Zhang et al., unpublished data). The increase
in the number of described mechanisms by which gonadal
steroids can affect cell function has paralleled the rapid
growth in their observed effects. Consequently, with each
of these newly identified actions (which are usually, but
sometimes inaccurately, called nongenomic), one needs to
examine multiple factors before inferring the mechanism of
action: (a) the duration required to see the effect, (b) the
impact on the effect of inhibitors of transcription and pro-
tein synthesis, (c) the presence (or absence) of intracellular
hormone receptors, (d) the stereospecificity of ligand bind-
ing (to see if effects are mediated through a classic receptor),
(e) the effect of hormone receptor blockers, and (f) the abil-
ity of the ligand to initiate the action from the cell mem-
brane (i.e., when entry into the cell is blocked). This last
requirement acknowledges the presence on the membrane
of binding sites for gonadal steroids that appear to be physi-
ologically relevant (32).

Fifth, gonadal steroids regulate cell survival. Neuropro-
tective effects of estradiol have been described in neurons
grown in serum-free media or those exposed to glutamate,
amyloid-�, hydrogen peroxide, or glucose deprivation (22).
Some of these effects appear to lack stereospecificity (i.e.,
are not classic receptor-mediated) and may be attributable
to the antioxidant properties of estradiol (33,34), although
data from one report are consistent with a receptor-me-
diated effect (35). Gonadal steroids may also modulate cell
survival through effects on cell survival proteins (e.g., Bcl-
2, Bax), MAPK, or even amyloid precursor protein metabo-
lism (31,36,37) (Zhang et al., unpublished data).

Sixth, some actions of gonadal steroids on brain appear
to depend on context and developmental stage. Toran-
Allerand (38) has shown that estrogen displays reciprocal
interactions with growth factors and their receptors (e.g.,
p51 and trkA, neurotrophins) in such a way as to regulate,
throughout development, the response to estrogen stimula-
tion; estrogen stimulates its own receptor early in develop-
ment, inhibits it during adulthood, and stimulates it again
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in the context of brain injury. Additionally, we have demon-
strated that the ability to modulate serotonin receptor sub-
type and GABA receptor subunit transcription in rat brain
with exogenous administration of gonadal steroids or gona-
dal steroid receptor blockade largely depends on the devel-
opmental stage (e.g., last prenatal week vs. fourth postnatal
week) during which the intervention occurs (39; Zhang et
al., unpublished data).

Finally, the effects of gonadal steroids do not occur in
isolation, but rather in exquisite interaction with the envi-
ronment. Juraska (40), for example, demonstrated that the
rearing environment (enriched vs. impoverished) dramati-
cally influences sex differences in dendritic branching in the
rat cortex and hippocampus. Further, the size of the spinal
nucleus of the bulbocavernosus and the degree of adult male
sexual behavior in rats is in part regulated by the amount
of anogenital licking they receive as pups from their moth-
ers, an activity that is elicited from the dames by the andro-
gen the pups secrete in their urine (41).

SEXUAL DIMORPHISMS IN BRAIN
STRUCTURE AND FUNCTION

In a highly influential article from the laboratory of C. W.
Young, Phoenix et al. (42) demonstrated that exposure of
the prenatal female guinea pig to androgens leads to defemi-
nization of reproductive behavior in adulthood and in-
creased sensitivity to androgen-induced male mating behav-
ior. The authors interpreted these results as demonstrating
an organizational effect of perinatal steroids on structure
and subsequent behavioral function of the brain. These or-
ganizational effects, permanent changes in the brain conse-
quent to exposure to gonadal steroids during small, critical
windows of development, were contrasted with activational
effects, which were impermanent effects that required con-
tinued exposure to gonadal steroids. This dichotomy was
not uniformly accepted (43); Beach and Holz (44), who
had demonstrated the effects on adult reproductive behavior
of perinatal steroid manipulation and had interpreted them
as derived from changes in gonadal morphology rather than
brain function, referred to organizational effects as imagi-
nary brain mechanisms (45). Nonetheless, by the late 1960s
and early 1970s, the evidence for sexual dimorphisms in
the brain that were organized by perinatal steroids was fairly
compelling. Pfaff (46) demonstrated dimorphisms in rat
brain in both gross and cellular morphology, with the di-
morphisms altered by perinatal castration. Nottebohm and
Arnold (47) showed that male song birds, who, in contrast
to females, have the capacity to sing, had song control nuclei
that were five to six times larger than comparable structures
in the female. In two classic articles, Raisman and Field
(48,49) demonstrated dimorphisms in neural connections;
females showed a greater proportion of spine synapses in

the preoptic area (48), and this dimorphism could be altered
by perinatal steroid manipulation (49). Gorski et al. (50)
identified in mammals a sexually dimorphic nucleus of the
preoptic area that was two to six times larger in males than
in females, and Rainbow et al. (51) demonstrated sexual
differences in the response to gonadal steroids, with PR
induction by estrogen seen more robustly in females than
in males.

In subsequent years, sexual dimorphisms have been iden-
tified at all levels of the neuraxis and include differences in
the following: nuclear volume; neuron number, size, den-
sity, morphology, and gene expression; neuritic outgrowth
and arborization; synapse formation; glial number, mor-
phology, and gene expression; and capacity for certain phys-
iologic (e.g., cyclic gonadotropin secretion) and behavioral
(e.g., song) activities (see refs. 52, 53 for review). For exam-
ple, we observed that in comparison with male astrocytes,
perinatal cortical astrocytes from female rats have more acti-
vated MAPK at baseline and are more sensitive to estradiol
suppression of both MAPK and cell proliferation (Zhang
et al., unpublished data). Additionally, we observed dramatic
dimorphisms in the developmental pattern and amount of
expression of the cell survival/death proteins Bcl-2 and Bax
(Zhang et al., unpublished data). The wide scope of these
sex differences has become less mystifying as gonadal ste-
roids have been seen to regulate virtually all stages of brain
development, from neurogenesis to neural migration, differ-
entiation, synaptogenesis, survival, and death (53). None-
theless, despite the elegance of sexually dimorphic brain
organization as an explanation for dimorphic behaviors, the
complexity of the process underlying the development of
sexual dimorphisms has assumed daunting proportions.
First, it is often difficult to interpret the meaning of the
dimorphisms. For example, lesions of the sexually dimor-
phic nucleus of the preoptic area (SDN-POA) do not com-
promise male copulatory behavior (despite the role of the
preoptic area in reproductive behavior) (54), and DeVries
and Boyle (55) have suggested that sexual dimorphisms may
in some cases mediate the same behavior (e.g., the same
parental behavior in prairie voles is mediated by differences
in vasopressin). Second, lack of parallelism across genders
complicates ascription of dimorphisms to the presence or
absence of a particular steroid hormone. For example, song
behavior (usually seen only in males) develops in female
zebra finches if they are administered androgen or estradiol
perinatally, but males deprived of androgen perinatally show
no disruption of song behavior as adults (56,57). Third,
some sexual dimorphisms appear to be organized and are
independent of subsequent steroid exposure (58); others are
activated (i.e., are dependent on subsequent steroid expo-
sure) but not organized (i.e., they are not permanently influ-
enced by perinatal steroid manipulation) (59); and still oth-
ers are both organized and activated (e.g., the perinatally
androgenized female zebra finch requires androgen as an
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adult to express song behavior) (55,60). Further, Reisert and
Pilgrim (61) have evidence suggesting that dimorphisms in
the course of development of mesencephalic and dience-
phalic neurons are under genetic control (i.e., they are deter-
mined well before the appearance of any differences in gona-
dal steroid levels), like the genetically determined pouch or
scrotum in marsupials (62). Fourth, the activational–organ-
izational dichotomy is far more fluid and plasticity is much
greater than the concept of critical periods allows. In con-
trast to the female zebra finch (who shows no male song
behavior if androgenized during adulthood only), the female
canary receiving androgen during adulthood exhibits male
song behavior and shows masculine morphologic changes
in the vocal control nuclei, including marked dendritic
branching (63,64). Not only is the timing of hormonal ad-
ministration (and species of the animal) important in deter-
mining outcome, but the manner of administration may
also dictate the response. For example, Sodersten (65) dem-
onstrated that one can induce typical female behavior in
gonadectomized adult male rats by pulsatile but not contin-
uous administration of estradiol followed by progesterone.
Complexities notwithstanding, gonadal steroids appear ca-
pable of programming gonadal steroid sensitive circuitry in
the brain, behavioral capacities, and differential response to
the same physiologic stimulus.

SEXUAL DIMORPHISMS IN HUMANS

Given the relative lack of access to the brain in human
studies in comparison with similar investigations in animals,
the existence of gender-related differences has provided a
major source of inference about the role of gonadal steroids
in brain function and behavior. Reported gender dimor-
phisms in psychiatry include the following: prevalence, phe-
nomenology (including characteristic symptoms, age at
onset, susceptibility to recurrence, stress responsivity), and
treatment characteristics. Specific examples of such dimor-
phisms are presented below.

Depression

Studies consistently demonstrate a twofold increased preva-
lence of depression in women in comparison with men
(66–69), and this increased prevalence has been observed in
a variety of countries (68). A twofold to threefold increased
prevalence of dysthymia and a threefold increase in seasonal
affective disorder (70) in women have also been noted (71).
Although bipolar illness is equally prevalent in men and
women (66,72,73; see ref. 74 for review), prepubertal
depression prevalence rates are not higher in girls (75,76),
possibly reflecting ascertainment bias (depressed boys may
be more likely to come to the attention of health care pro-
viders) or the possibility that prepubertal major depression is

premonitory of bipolar illness (77). With some exceptions,
fewer differences in age at onset (68,69,78–81; but see also
refs. 82–85), type of symptoms, severity, and likelihood of
chronicity and recurrence (68,69,78,82,86–88; but see also
refs. 89–93) are seen between men and women. Women
are more likely to present with anxiety, atypical symptoms,
or somatic symptoms (70,78,78,82,91,93–95) and are
more likely to report symptoms, particularly in self-ratings
(70,78,95). They are also more likely to report antecedent
stressful events (96,97) and manifest a more robust effect
of stress on the likelihood depression developing during
adolescence (98). Women display increased comorbidities
of anxiety and eating disorders (83,99–101), thyroid disease
(102,103), and migraine headaches (104), and a lower life-
time prevalence of substance abuse and dependence (82,83).
Reported differences in treatment response characteristics in
women in comparison with men include a poor response
to tricyclics (105–108), particularly in younger women
(106); a superior response to selective serotonin reuptake
inhibitors or monoamine oxidase inhibitors (109,110); and
a greater likelihood of response to triiodothyronine (T3)
augmentation (103). The extent to which these differences
reflect gender-related differences in pharmacokinetics
(111–117) remains to be determined. Finally, although the
prevalence of bipolar disorder is comparable in men and
women, rapid cycling is more likely to develop in women
(74), and they may be more susceptible to antidepressant-
induced rapid cycling (118).

Schizophrenia

Although prevalence rates of schizophrenia appear compara-
ble in men and women, a variety of differences in phenome-
nology, course, and treatment response characteristics have
been identified (111,119,120).

Most but not all (121) studies suggest that the onset of
schizophrenia is later in women and that they have better
premorbid function (20–40 vs. 17–30; 122–126). Al-
though symptom patterns during acute psychosis do not
appear to differ substantially by gender, a variety of studies
suggest that deficit or negative symptoms occur more fre-
quently in men (123,127–129), perhaps consistent with
the increased incidence in men of abnormalities of brain
structure (primarily the corpus callosum) (127,130–133)
and cognitive impairment (134). The course of illness in
women tends to be more benign, with higher levels of psy-
chosocial function (124), less time in a psychotic state (135),
fewer days of hospitalization and fewer readmissions (126,
136,137), less substance abuse (126,135,137), and less vio-
lence (aggressive episodes and completed suicide) (123,
138). Finally, consistent with a more benign course (at least
until middle age), women are reported to respond to neuro-
leptics more quickly, more extensively, and at lower doses
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(123,139–145). The extent to which this last observation
reflects gender dimorphisms in pharmacokinetics (e.g., drug
absorption, storage, distribution volume, clearance) versus
pharmacodynamics awaits determination (112).

Physiologic Dimorphisms

The epidemiologic observations previously described are in-
creasingly complemented by demonstrations of sexual di-
morphisms in brain structure and physiology in humans.
Structural and functional brain imaging studies, for exam-
ple, have shown the following: (a) differences in functional
organization of the brain, with brain activation response to
rhyming task lateralized in men but not in women (146);
(b) gender-specific decreases in regional brain volume (cau-
date in males and globus pallidus, putamen in females) dur-
ing development (147); (c) increased neuronal density in
the temporal cortex in women (148); (d) greater interhemis-
pheric coordinated activation of brain regions in women
(149); (e) larger-volume hypothalamic nucleus (INAH3) in
men (150); (f) differences in both resting blood flow and the
activation pattern accompanying self-induced mood change
(151); (g) decreased serotonin (5-HT2) binding in the fron-
tal, parietal, temporal, and singular cortices in women
(152); (h) differences in whole-brain serotonin synthesis (in-
terpreted as decreased in women but possibly increased if
corrected for plasma levels of free tryptophan (153); (i)
greater and more symmetric cerebral blood flow in women
(154–158); (j) greater asymmetry in the planum temporale
in men (159); and (k) higher rates of brain glucose metabo-
lism (19%) in women (160,161). The potential relevance
of gonadal steroids in some of these differences has also
been demonstrated with the same technologies. For exam-
ple, Berman et al. (162) demonstrated that the normal pat-
tern of cognitive task-activated cerebral blood flow is elimi-
nated by induced hypogonadism and restored by
replacement with estradiol or progesterone. These findings
were supported by Shaywitz et al. (163), who demonstrated
estrogen enhancement of cognitive task-stimulated brain re-
gional activation on function magnetic resonance imaging
(fMRI) in postmenopausal women. Additionally, Wong et
al. (164) demonstrated in a small number of subjects that
dopamine receptor density in the caudate (measured by pos-
itron emission tomography) varies as a function of the men-
strual cycle (lower in the follicular phase). The contribution
of these and other effects of gonadal steroids to observed
gender dimorphisms must, obviously, await further deter-
mination.

MOOD DISORDERS RELATED TO
REPRODUCTIVE ENDOCRINE FUNCTION

Given the complexity of the factors that affect gender
throughout development, it is very difficult to infer the

degree to which differential exposure to gonadal steroids
determines gender-related behavioral differences. A better
opportunity to determine the behavioral relevance of fluc-
tuations in gonadal steroids is provided by mood disorders
that appear linked to changes in levels of reproductive ste-
roids. In the following section, we review the role of gonadal
steroids in the precipitation and treatment of mood disor-
ders by focusing on three disorders: premenstrual syndrome
(PMS), postpartum depression (PPD), and perimenopausal
depression.

Premenstrual Syndrome

Although Frank is credited with the first description of ‘‘pre-
menstrual tension’’ in 1931, reports of mood and behavioral
disturbances confined to the luteal phase of the menstrual
cycle appeared earlier, in the medical literature of the nine-
teenth century. For example, in 1847, Dr. Ernst G. Von
Feuchtersleben stated that ‘‘the menses in sensitive women
is almost always attended by mental uneasiness, irritability
or sadness’’ (165). Two years later, the organ transplantation
studies of Berthold (2) demonstrated that the reproductive
organs possess factors that can markedly alter physiology
and behavior, an observation that culminated in the late
nineteenth century in the practice by organotherapists of
administering ground-up animal glands and organs to treat
a wide array of diseases and ailments (4). In this context,
the isolation and characterization of ovarian steroids in the
early twentieth century led to the inevitable assumption that
premenstrual tension is caused by an excess or deficiency
of estrogen or progesterone. In the ensuing years, each new
discovery in endocrinology gave rise to a new theory of PMS
if the new endocrine factor could in any way be shown to
influence or be influenced by the menstrual cycle or poten-
tially mediate any of the myriad symptoms attributed to
PMS. Despite the obvious appeal of hormonal excess or
deficiency as an explanation for PMS, consistent demonstra-
tion of any hormonal abnormality was lacking. A major
source of study inconsistency was identified in the 1980s
(166)—namely, that samples of women with PMS were
selected (diagnosed) with highly unreliable techniques (i.e.,
unconfirmed history). Without prospective demonstration
of luteal phase-restricted symptom expression, samples se-
lected were certain to include a large number of false-posi-
tives and so make it impossible to apply the data to the
population with PMS (167). This requirement for prospec-
tive confirmation of luteal phase symptomatology was ulti-
mately incorporated into diagnostic criteria for PMS (Na-
tional Institute of Mental Health, unpublished data, 1983)
and late luteal phase depressive disorder/premenstrual de-
pressive disorder (168). Although the improved diagnostic
methods used since the mid-1980s have ensured the com-
parability of samples selected for study, subsequent data, if
anything, have provided fairly convincing evidence against
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hormonal excess or deficiency as etiologically relevant in
PMS.

Individual studies have identified diagnostic group-re-
lated differences in levels of reproductive hormones, but the
most consistent and compelling data support the absence
of such differences. We observed no diagnosis-related differ-
ences in plasma levels, areas under the curve, or patterns
of hormone secretion for estradiol, progesterone, follicle-
stimulating hormone (FSH), or luteinizing hormone (LH)
(169), findings consistent with those of Backstrom et al.
(170) in a comparison of patients with high and low degrees
of cyclic mood change.

In recent additions to the conflicting literature, Wang
et al. (171) observed increased estradiol and decreased pro-
gesterone levels in women with PMS, Redei and Freeman
(172) reported nonsignificant increases in both estradiol and
progesterone, and Facchinetti et al. (173) found no differ-
ences between subjects and controls in integrated progester-
one levels. Results of studies of androgen levels have been
similarly inconsistent, demonstrating both normal and de-
creased testosterone levels (174–176) and elevated and de-
creased free testosterone levels (175,176).

Recent speculations about the etiology of PMS have fo-
cused on putative abnormal neurosteroid levels. Observa-
tions central to these speculations include the following: (a)
the GABA receptor (the presumed mediator of anxiolysis)
is positively modulated by the 5-� and 5-� reduced metabo-
lites of progesterone (allopregnanolone and pregnanolone,
respectively) (25); (b) withdrawal of progesterone in rats
produces anxiety and insensitivity to benzodiazepines sec-
ondary to withdrawal of allopregnanolone, with consequent
induction of GABAA �4 subunit levels and inhibition of
GABA currents (177,178); (c) decreased plasma allopregna-
nolone levels are seen in major depressive disorder and in
depression associated with alcohol withdrawal, with in-
creased levels seen in plasma and cerebrospinal fluid follow-
ing successful antidepressant treatment (179–182); (d) allo-
pregnanolone has anxiolytic effects in several animal models
of anxiety (183–185) and may be involved in the stress
response (186); (e) antidepressants may promote the reduc-
tive activity of one of the neurosteroid synthetic enzymes
(3-�-hydroxysteroid oxidoreductase) and thus favor the for-
mation of allopregnanolone (187); (f) patients with PMS
show differences in pregnanolone-modulated saccadic eye
velocity and sedation in the luteal phase in comparison with
controls (188) (although the reported differences seem at-
tributable to a saccadic eye velocity response to vehicle in
those with PMS and a blunted sedation response in the
follicular phase in controls); (g) patients with severe PMS
show blunted saccadic eye velocity and sedation responses
to GABAA-receptor agonists—pregnanolone (188) or mi-
dazolam (189)—in comparison with patients with mild
PMS. Although one investigator observed decreased serum
allopregnanolone levels in women with PMS in comparison
with controls on menstrual cycle day 26 (190), other studies

showed no diagnosis-related differences in allopregnanolone
or pregnanolone (191,192) nor any difference in allopregna-
nolone levels in women with PMS before and after success-
ful treatment with citalopram (193). Wang et al. (192) did
find that if two cycles differed in area under the curve of a
hormone by more than 10%, the cycle with the lower levels
of allopregnanolone and higher levels of estradiol, pregna-
nolone, and pregnenolone sulfate was accompanied by more
severe symptoms.

In sum, then, no consistent or convincing evidence is
available that PMS is characterized by abnormal circulating
plasma levels of gonadal steroids or gonadotropins or by
hypothalamic–pituitary–ovarian axis dysfunction. Several
studies do, however, suggest that levels of estradiol, proges-
terone, or neurosteroids (e.g., pregnenolone sulfate) may be
correlated with symptom severity in women with PMS
(171,194,195).

If one treats PMS with any of a number of therapies,
one is never certain that the response seen is causally related
to the pharmacologic (contrasted with the nonspecific)
properties of the intervention employed. Therefore, we at-
tempted to dissociate the symptoms of PMS from the men-
strual cycle phase by targeting the menstrual cycle phase
rather than the symptoms (196). We administered a proges-
terone receptor blocker (RU 486) with or without human
chorionic gonadotropin (hCG) to women with PMS during
the early luteal to midluteal phase. Within 2 days of admin-
istration, RU 486 caused menses (by blocking the endome-
trial progesterone receptors) and luteolysis and advanced
the onset of the follicular phase of the next cycle. Addition
of hCG does not alter the RU 486-induced menses but
‘‘rescues’’ or preserves the corpus luteum and permits a lu-
teal phase of normal length. Consequently, after women
experienced an RU 486-induced menses, they did not know
whether they were in the follicular phase of the next cycle
(RU 486 alone) or in the preserved luteal phase of the first
cycle (RU 486 plus hCG). Women in both groups experi-
enced typical PMS symptoms despite the fact that the
women receiving RU 486 were now symptomatic in the
context of an experimentally advanced follicular phase.
Hence, the endocrinology of the midluteal to late luteal
phase is irrelevant to the symptoms of PMS, as this phase
can be eliminated without influencing the appearance of
PMS symptoms. This suggested two possibilities: mood
symptoms in women with PMS were entrained to the men-
strual cycle but not caused by it, or mood symptoms might
be triggered in the luteal phase by reproductive endocrine
events occurring earlier in the menstrual cycle, a possibility
that was examined in a second study.

The gonadotropin-releasing hormone (GnRH) agonist
leuprolide acetate (Lupron) was administered for 3 months
in a double-blinded, placebo-controlled, parallel-design
study to 20 women with PMS. Women receiving Lupron,
but not those receiving placebo, demonstrated a significant
decrease in symptom severity and cyclicity, consistent with
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several earlier demonstrations of the efficacy in PMS of
medical or surgical oophorectomy (197,198). The ovulatory
cycle, therefore, appears to be necessary for the expression
of PMS (199).

To determine whether gonadal steroids were the factors
that when removed resulted in the elimination of PMS, we
added back estradiol and progesterone separately to women
who continued to take Lupron and for whom Lupron alone
successfully eliminated symptoms of PMS. Both estradiol
and progesterone were associated with a return of symptoms
typical of PMS. Symptoms were precipitated within 7 to
10 days and largely remitted by the end of the 4-week phase
of addback. It does appear, therefore, that gonadal steroids
can trigger symptoms of PMS, an observation that at first
glance appears discordant with the lack of differences in
gonadal steroid levels between women with PMS and con-
trols. The reconciliation of these observations is found in
the second part of the aforementioned study, in which a
comparison group of women with confirmed absence of
PMS received the same protocol of Lupron and hormone
addback. The control women showed no perturbation of
mood during Lupron-induced hypogonadism or during
hormone addback with either progesterone or estradiol, de-
spite achieving hormone levels comparable with those seen
in the women with PMS. Women with PMS, therefore, are
differentially sensitive to gonadal steroids such that they
experience mood destabilization with levels or changes in
gonadal steroids that are absolutely without effect on mood
in women lacking a history of PMS. Gonadal steroids, then,
are necessary but not sufficient for PMS. They can trigger
PMS, but only in women, who, for undetermined reasons,
are otherwise vulnerable to experience mood state destabili-
zation (199). In other words, PMS represents an abnormal
response to normal hormone levels.

Postpartum Depression

The literature examining the possible role of hormone ab-
normalities in postpartum is more exiguous than that for
PMS. This literature, however, may be similarly distilled;
the evidence for a reproductive hormone abnormality in
PPD is scant (200–204, but see also ref. 205). Nonetheless,
it is difficult to regard as irrelevant the enormous hormonal
excursions occurring during the puerperium (with precipi-
tous drops of estradiol and progesterone from levels of up
to 15,000 pg/mL and 150 ng/mL, respectively, to hypogon-
adal levels in just 1 to 3 days). Analagous to our observations
with PMS, it is possible that women with and those without
PPD differ in sensitivity to puerperal hormone changes, not
in the degree to which they occur. To test this hypothesis,
we created a scaled-down model of the puerperium in which
women received high-dose estradiol and progesterone for 2
months (superimposed on Lupron-induced gonadal
suppression to permit comparability and stability of levels
achieved), followed by a blinded, precipitous withdrawal of

gonadal steroids and a consequent Lupron-induced hypo-
gonadal state. This protocol was performed in two groups:
euthymic women with a history of PPD occurring no more
recently than 1 year before the study (PPD�) and controls
lacking a history of depression (PPD�). In the first 2 weeks
following withdrawal, the women with a history of PPD
experienced a significant increase in measures of depression
relative to baseline, with several subjects experiencing an
increase in symptoms during the last few weeks of addback.
No similar symptoms were experienced by the women lack-
ing a history of PPD. Both the levels of hormones achieved
and the change from peak to withdrawal-induced hypogo-
nadism were comparable in the two groups. It appears,
therefore, that like women with PMS, women with a history
of PPD experience mood state destabilization in association
with changes in levels of gonadal steroids that are without
effect on mood in women lacking a history of PPD. The
hormonal changes can trigger the mood state change, but
only in a context of increased susceptibility to affective dys-
regulation.

Context

The differential sensitivity to gonadal steroids seen in
women with a history of PMS or PPD emphasizes that the
response to a biological signal cannot be inferred absent an
understanding of the context in which the signal occurs.
This context includes current physiologic and external envi-
ronments, prior experience, past history of exposure to the
stimulus, and genetic makeup. With the imminent mapping
of the human genome, this last contextual determinant be-
comes of great practical interest as a potential explanation
for the differential response to steroids. Data already exist
from both animal and human studies in support of this
hypothesis. Spearow et al. (206) demonstrated greater than
16-fold differences in sensitivity to estradiol (reproductive
disruption) across six different mouse strains, with genotype
accounting for more of the variation than the dose of estra-
diol. Similarly, strain/genetic (and task-dependent) differ-
ences in behavioral sensitivity to allopregnanolone were ob-
served by Finn et al. (207). Huizenga et al. (208)
demonstrated not only intraperson stability of baseline cor-
tisol and feedback sensitivity (to dexamethasone), which
suggests a genetic influence (209), but also a higher sensitiv-
ity to exogenously administered glucocorticoid (dexametha-
sone) in association with a polymorphism in exon 2 of the
glucocorticoid receptor. Association studies suggest a pro-
gressively increased rate and severity of prostate cancer as
the number of cytosine–adenine–guanosine (CAG) tri-
nucleotide repeats in exon 1 of the androgen receptor de-
creases (210). This observation is accompanied by the recent
observation that androgen receptors with decreased CAG
repeats demonstrate increased transcriptional efficiency
(211). Steroid receptor polymorphisms, then, may alter the
steroid signaling pathway in such a way as to produce or
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contribute to a different behavioral/phenotypic response to
a hormone signal. As appealing as this explanation is for
the differential sensitivity observed in PMS and PPD, the
demonstrations in animal studies that perinatal steroid ma-
nipulations alter the organization of gonadal steroid-sensi-
tive circuitry (42) and gonadal steroid-activated gene expres-
sion (212) caution us that gene–environment interactions
may yield markedly different phenotypic expressions of the
same genotype.

Hormones as Therapeutic Agents

An emerging area of interest is the use of gonadal steroids
in the treatment of PPD (213) and the perimenopause. As
in PPD, the evidence for a reproductive hormonal abnor-
mality in perimenopausal depression is vanishingly small
(214–216; Schmidt et al., unpublished data). Some
(217–220) but not all (Schmidt et al., unpublished data)
studies have observed lower plasma LH levels in postmeno-
pausal depressed women, but no consistent group-related
differences in gonadal steroids have been demonstrated.
Similarly, despite claims for the antidepressant efficacy of
estrogen dating back to the nineteenth century (4,221), re-
ports of the effect of estradiol on mood in perimenopausal
and postmenopausal women (222–226) have been inconsis-
tent (227–229) and have been compromised by the failure
to diagnose depression (as opposed to depressive symptoms,
which have different causes and treatment response charac-
teristics), the failure (with one exception; see ref. 226) to
consider remediation of hot flushes as a confound in assess-
ment of psychotropic efficacy, and the failure to assess effi-
cacy in perimenopausal (vs. postmenopausal) women, a po-
tentially important distinction identified by Montgomery
et al. (222). These problems were addressed in a recent study
that demonstrated the antidepressant efficacy of estradiol in
perimenopausal women with major and minor depression
(230,231). The antidepressant effects were further shown
in the subsample of women with no hot flushes, so that
the possibility that remediation of hot flush-induced sleep
disturbance might indirectly improve mood was eliminated.
A subsequent study has similarly demonstrated the psycho-
tropic efficacy of estradiol in perimenopausal depression (C.
Soares et al., unpublished data). These observations converge
with in vitro and epidemiologic evidence for neuroprotec-
tive effects of estradiol in suggesting that gonadal steroids
(and adrenal androgens) may enter the neuropsychiatric
therapeutic armamentarium, either as primary or adjunctive
agents. While not permitting an inference about the etiology
of reproductive endocrine-related mood disorders, the psy-
chotropic effects of hormones may help dissect neural path-
ways of relevance to the regulation of affect. Attempts to
define the mechanisms underlying both the psychotropic
effects of gonadal steroids and the differential response to
endogenous gonadal steroids should help advance our ef-

forts to illuminate the neurobiology of mood and mood
disorders.
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