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STRUCTURAL AND FUNCTIONAL
IMAGING OF ANXIETY AND STRESS

DISORDERS

SCOTT L. RAUCH
LISA M. SHIN

GENERAL PRINCIPLES

Neuroimaging research has emerged as a powerful force in
shaping neurobiological models of psychiatric disorders. In
this chapter, neuroimaging findings pertaining to anxiety
and stress disorders are reviewed. This review necessarily
extends previous ones that we have written, together with
our colleagues, on this same and related topics (97,98,103).

Anxiety and Stress Disorders

Whereas anxiety disorders comprise a discrete category
within the current version of the Diagnostic and Statistical
Manual (2), the concept of stress disorders is less well de-
fined. Although growing evidence suggests that stress may
play a role across a variety of psychiatric disorders (such as
major depression), posttraumatic stress disorder (PTSD)
and acute stress disorder remain the only conditions for
which exposure to traumatic stress is explicitly acknowl-
edged as an etiologic factor and a criterion for diagnosis.
In this chapter, we survey the imaging data pertinent to
models of PTSD and other anxiety disorders, including ob-
sessive-compulsive disorder (OCD), specific phobias (SpP),
social phobia (SoP; also called social anxiety disorder) and
panic disorder (PD).

In general, patients with anxiety disorders suffer either
exaggerated fear responses to relatively innocuous stimuli
(e.g., phobias) or spontaneous fear responses in the absence
of true threat (e.g., PD). Thus, it is important to consider
the mediating neuroanatomy of normal threat assessment
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and the fear response. In fact, contemporary models focus
on these systems as candidate neural substrates for the anxi-
ety disorders.

Relevant Neuroanatomy

The limbic system plays an important role in mediating
human emotional states, including anxiety. Anterior para-
limbic cortex (i.e., posterior medial orbitofrontal, anterior
temporal, anterior cingulate, and insular cortex) links corti-
cal regions subserving higher level cognition and sensory
processing with deep limbic structures, such as the amygdala
and the hippocampus (81).

Modern models of threat assessment and the normal fear
response have focused on the role of the amygdala (1,75).
The amygdala is positioned to receive input regarding the
environment both directly and, thus, rapidly from the thala-
mus as well as from sensory cortex. The amygdala appears to
serve several related functions, including preliminary threat
assessment; facilitation of fight-or-flight responses; facilita-
tion of additional information acquisition; and enhance-
ment of arousal and plasticity, so the organism can learn
from the current experience to guide responses optimally
in future similar situations.

Conversely, several brain areas provide important feed-
back to the amygdala (1,75): medial frontal cortex (e.g.,
anterior cingulate and orbitofrontal cortex) may provide
critical ‘‘top-down’’ governance over the amygdala, thus en-
abling attenuation of the fear response once danger has
passed or when the meaning of a potentially threatening
stimulus has changed; the hippocampus provides informa-
tion about the context of a situation (based on information
retrieved from explicit memory stores); and corticostriato-
thalamic circuits mediate ‘‘gating’’ at the level of the thala-
mus and thereby regulate the flow of incoming information
that reaches the amygdala.

Finally, neuromodulators influence the activity within
each of these various brain areas, as well as the interactions
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among the nodes of the entire system outlined earlier. As-
cending projections from the raphe nuclei (serotonin) and
the locus ceruleus (norepinephrine), as well as widespread
local �-aminobutyric acid–ergic (GABAergic) neurons, are
perhaps most relevant to the physiology of anxiety (30,65,
114). These transmitter systems likely serve as the principal
substrates for contemporary anxiolytic medications, includ-
ing serotonergic reuptake inhibitors, monoamine oxidase
inhibitors, other antidepressant medications, and benzodi-
azepines.

Neuroimaging Methods

Morphometric magnetic resonance imaging (mMRI) meth-
ods can be used to test hypotheses regarding abnormalities
in the size or shape of particular brain structures. Functional
imaging methods include positron emission tomography
(PET) with tracers that measure blood flow (e.g., oxygen-
15–labeled carbon dioxide) or glucose metabolism (i.e.,
fluorine-18–labeled fluorodeoxyglucose [FDG]), single
photon emission tomography (SPECT) with tracers that
measure correlates of blood flow (e.g., technetium-99–
labeled hexamethylpropylene amine oxime [TcHMPAO]),
and functional MRI (fMRI) to measure blood oxygenation
level–dependent (BOLD) signal changes. Each of these
techniques yields maps that reflect regional brain activity.

Functional imaging methods can be applied in the con-
text of various experimental paradigms. In neutral state para-
digms, subjects are studied during a nominal ‘‘resting’’ state
or while they perform a nonspecific continuous task. Thus,
between-group comparisons are made to test hypotheses
regarding group differences in regional brain activity, with-
out particular attention to state variables. In treatment para-
digms, subjects are scanned in the context of a treatment
protocol. In pre/posttreatment studies, subjects are scanned
both before and after a trial. Then, within-group compari-
sons are made to test hypotheses regarding changes in brain
activity profiles associated with symptomatic improvement.
Alternatively, correlational analyses can be performed to
identify pretreatment brain activity characteristics that pre-
dict good or poor treatment response. In symptom provoca-
tion paradigms, subjects are scanned during a symptomatic
state (after having their symptoms intentionally induced)
as well as during control conditions. Within-group compar-
isons can be made to test hypotheses regarding the mediat-
ing anatomy of the symptomatic state; group-by-condition
interactions can be sought to distinguish responses in pa-
tient versus control groups. Behavioral and pharmacologic
challenges can be used to induce symptoms. In some cases,
when symptomatic states occur spontaneously, experiments
are designed to capture these events without the need for
provocation or induction per se. In cognitive activation para-
digms, subjects are studied while they perform specially de-
signed cognitive-behavioral tasks. This approach is intended
to increase sensitivity by employing tasks that specifically

activate brain systems of interest. Again, group-by-condi-
tion interactions are sought to test the functional responsiv-
ity or integrity of specific brain systems in patients versus
control subjects.

Imaging studies of neurochemistry have employed PET
and SPECT methods in conjunction with radiolabeled
high-affinity ligands. In this way, regional receptor number
and or affinity can be characterized in vivo (i.e., receptor-
characterization studies). Other approaches include the use
of magnetic resonance spectroscopy (MRS) to measure the
regional relative concentration of select ‘‘MRS-visible’’
compounds. For instance, MRS can be used to measure the
compound N-acetylaspartate (NAA), which is a purported
marker of healthy neuronal density.

These various neuroimaging techniques should be
viewed as complementary. Convergent findings across para-
digms and laboratories yield the most cohesive and compel-
ling models of pathophysiology.

RELEVANT NEUROIMAGING FINDINGS IN
HEALTHY SUBJECTS

Anxiety and Other Negative Emotional
States

Behaviorally Induced Fear and Anxiety

Fischer and colleagues used PET to study regional cerebral
blood flow (rCBF) in bank officials while they viewed secu-
rity camera videotape of a robbery that they had experienced
previously (46). Watching the robbery video was associated
with rCBF increases in orbitofrontal cortex, visual cortex,
and posterior cingulate gyrus; rCBF decreases occurred in
Broca’s area, left angular gyrus, operculum, and secondary
somatosensory cortex. Paradiso et al. studied rCBF in
healthy elderly subjects who viewed emotionally evocative
film clips; a fear/disgust versus neutral comparison revealed
activation in orbitofrontal cortex, among other areas (93).
Similarly, Kimbrell et al. studied induced emotional states
in healthy adults (67); relative to a neutral condition, an
anxiety condition was associated with rCBF increases in left
anterior cingulate and left temporal pole, whereas rCBF
decreases were found in nonparalimbic frontal cortical re-
gions. Liotti et al. used PET and autobiographic memory
scripts to examine the neural correlates of anxiety and sad-
ness in healthy women (77); relative to a neutral condition,
an anxiety condition was associated with rCBF increases in
insular, orbitofrontal, and anterior temporal cortex and
rCBF decreases in parahippocampal gyri.

Pharmacologically Induced Fear and Anxiety

Benkelfat et al. examined rCBF changes associated with the
administration of cholecystokinin tetrapeptide versus saline
in healthy persons (10). Administration of cholecystokinin
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tetrapeptide was accompanied by increased heart rate and
panic symptoms and rCBF increases in right cerebellar ver-
mis, left anterior cingulate gyrus, bilateral claustrum-insula-
amygdala, and bilateral temporal poles. However, further
analyses suggested that the apparent temporal pole activa-
tions were attributable to extracranial artifacts of jaw muscle
contraction. Ketter et al. used PET to study rCBF changes
during procaine versus saline administration in healthy per-
sons (66). In the procaine versus saline contrast, rCBF in-
creases occurred in amygdala and anterior paralimbic struc-
tures, including anterior cingulate gyrus, insular cortex, and
orbitofrontal cortex. Blood flow in left amygdala was posi-
tively correlated with fear intensity and was negatively corre-
lated with euphoria intensity. Similar results were reported
by Servan-Schreiber et al. (126).

Other Negative Emotions

Several studies examining rCBF associated with behaviorally
induced sadness in healthy subjects have implicated both
anterior paralimbic and nonparalimbic frontal cortical areas
(4,54,55,77,94). Some studies of behaviorally induced sad-
ness have also found rCBF changes within the amygdala (71,
120,121). Of note, studies of other behaviorally induced
negative emotions, including anger (39,67) and guilt (127),
have likewise found activation of anterior paralimbic corti-
cal territories.

Processing Unpleasant, Arousing, or
Threat-Related Stimuli

In functional imaging studies of responses to unpleasant
pictures (73), several studies have found amygdala activation
when contrasted with a neutral (63,72) or pleasant picture
(92) comparison condition. In a separate study, Lane et
al. reported that anterior paralimbic regions were activated
when study subjects attended to the emotions evoked by
the pictures rather than when subjects attended to physical
attributes of the depicted scenes (70). Functional imaging
studies have also demonstrated a correlation between amyg-
dala activity during encoding of emotionally arousing pic-
tures or film clips and subjects’ subsequent memory of them
(29,59).

Several functional imaging studies have shown greater
amygdala responses to overtly presented fearful human facial
expressions in comparison with neutral or happy faces (14,
86). Whalen et al. used fMRI and a technique called ‘‘back-
ward masking’’ to study amygdala responses to emotional
faces in the absence of explicit knowledge (142). Although
subjects were unaware of seeing the ‘‘masked’’ emotional
faces, a comparison of the masked fear and masked happy
conditions yielded activation in the amygdala bilaterally.

Habituation

The term habituation refers to a decrement in responses
over repeated presentations of a stimulus. Measures of habi-

tuation can be obtained peripherally (e.g., skin conduc-
tance) or more centrally (e.g., rCBF or fMRI BOLD signal).
For example, declining fMRI BOLD signal within the
amygdala has been observed in response to repeated presen-
tations of fearful faces, regardless of whether subjects are
aware the stimuli are present (14,142).

A few studies have directly examined the neural correlates
of habituation. Fischer et al. used PET to study rCBF
changes over repeated presentation of videotaped scenes in
healthy women (45). In separate scanning conditions, sub-
jects watched two repeated videotaped presentations of neu-
tral park scenes and snakes. From the first to the second
presentation of the videotapes, rCBF decreased in bilateral
secondary visual cortex and right medial temporal cortex,
including amygdala and hippocampus. In an fMRI study,
Fischer et al. also found response decrements over repeated
presentations of human face stimuli in amygdala and hippo-
campus, as well as thalamus, and prefrontal, inferior tem-
poral, and posterior cingulate cortex (47). Similar results
have also been reported by Wright et al. (146).

Conditioning and Extinction

Fear conditioning involves the presentation of a neutral stim-
ulus (i.e., a conditioned stimulus [CS]), such as a tone,
that is temporally paired with an aversive stimulus (i.e.,
the unconditioned stimulus [US]), such as a shock. After
repeated presentations of the CS and US, the CS alone
begins to elicit fear-related autonomic changes, such as skin
conductance responses. Subsequently, over repeated presen-
tations of the CS without the US, fear responses decline,
and this process is referred to as extinction. Existing research
suggests that the amygdala plays a critical role in fear condi-
tioning (27,35,74,75,141), and the medial prefrontal cortex
may play a critical role in the process of extinction (56,83,
84).

Fredrikson and Furmark and their colleagues used PET
to study healthy subjects who viewed a videotape of snakes
(CS) both before and after the video was paired with shock
(US) (49,52). The findings revealed a significant correlation
between rCBF changes in right amygdala and electrodermal
activity changes. Hugdahl et al. used PET to compare pat-
terns of blood flow before and after classic conditioning in
healthy male study subjects, by employing a paradigm in
which a tone (CS) was paired with brief shock (US) (62).
Extinction was associated with widespread activations in
right prefrontal, including orbitofrontal, cortex, as well as
left occipital and superior frontal cortex.

In a different conditioning paradigm, Morris et al.
showed study subjects pictures of faces that were previously
paired with an aversive burst of white noise (CS�) and
faces that were never paired with the noise (CS�) (85). A
comparison of the CS� versus CS� conditions yielded
activation in right thalamus, orbitofrontal cortex, and supe-
rior frontal gyrus. There was a positive correlation between
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activation in thalamus and in right amygdala, orbitofrontal
cortex, and basal forebrain. Morris and colleagues subse-
quently used PET and backward masking techniques to
study rCBF responses to conditioned face stimuli with and
without awareness in healthy male subjects (87). When all
CS� conditions were compared with all CS� conditions,
bilateral activation in amygdala was observed. Right amyg-
dala activation was found in the condition in which subjects
were aware; left amygdala activation was found in the condi-
tion in which subjects were unaware of the emotionally
expressive face stimuli.

In a single-trial fMRI study, LaBar et al. examined amyg-
dala activation during both acquisition and extinction in a
mixed-gender cohort (69). In the acquisition condition, a
colored shape (CS�) was paired with a shock (US), whereas
a different colored shape (CS�) was never paired with
shock. No shocks were delivered during the extinction con-
dition. Comparing CS� with CS� trials revealed activa-
tion in periamygdaloid cortex and amygdala during early
acquisition and early extinction trials, respectively. Activa-
tion in both these regions declined over time. Büchel and
colleagues also used a single-trial fMRI to study the neural
correlates of fear conditioning in healthy subjects (26).
Study subjects were scanned during an acquisition phase in
which two neutral faces (CS�) were presented with a loud
tone (US) and two other neutral faces were presented alone
(CS�). To disambiguate the effects of the CS� and US,
the US was not presented on half of the CS� trials (i.e.,
CS�unpaired). The critical comparison, CS�unpaired versus
CS�, revealed activation in anterior cingulate, bilateral in-
sular, parietal, supplementary motor, and premotor cortex.
A time by event type interaction revealed that fMRI signal in
amygdala decreased over time in the CS�unpaired condition
relative to the CS� condition. Similar results were reported
by Büchel et al. in a trace conditioning study, in which a
temporal gap occurs between the offset of the CS and onset
of the US (28). These researchers also found conditioning-
related hippocampal activation that declined over time.

Summary

Taken together, functional imaging studies in healthy
human subjects extend findings from animal research. Nor-
mal anxiety and fear reactions are associated with increased
activity in limbic and paralimbic regions, whereas other ter-
ritories of heteromodal association cortex exhibit decreased
activity. However, similar patterns of limbic and paralimbic
activation may be observed in association with other emo-
tional states, and hence this general profile should not be
taken as specific to anxiety or fear. Exposures to unpleasant,
arousing, or threat-related stimuli often produce detectable
amygdala responses, which can be associated with enhanced
memory. Additional paralimbic recruitment may be related
to a person’s attention to his or her emotional state. Habi-
tuation can be observed in widely distributed brain regions,

including limbic, paralimbic, and sensory areas. Consistent
with animal data, human imaging results point to a role for
the amygdala in fear conditioning and for the frontal cortex
in extinction. The accessory role of the hippocampus in
these processes remains less well defined.

POSTTRAUMATIC STRESS DISORDER

Amygdalocentric Neurocircuitry Model

We previously presented a neurocircuitry model of PTSD
that emphasizes the central role of the amygdala and its
interactions with the hippocampus, medial prefrontal cor-
tex, and other heteromodal cortical areas purported to me-
diate higher cognitive functions (103). Briefly, this model
hypothesizes hyperresponsivity within the amygdala to
threat-related stimuli, with inadequate top-down gover-
nance over the amygdala by medial prefrontal cortex, specif-
ically, the affective division of anterior cingulate cortex
(142), and the hippocampus. Amygdala hyperresponsivity
mediates symptoms of hyperarousal and explains the indeli-
ble quality of the emotional memory for the traumatic
event; inadequate influence by the anterior cingulate cortex
underlies deficits of habituation, and decreased hippocam-
pal function underlies deficits in identifying safe contexts,
as well as accompanying explicit memory difficulties (21).
Further, we propose that in threatening situations, patients
with PTSD exhibit an exaggerated reallocation of resources
to regions that mediate fight-or-flight responses and away
from widespread heteromodal cortical areas, as a neural sub-
strate for dissociation.

Structural Imaging Findings

mMRI studies have reported smaller hippocampal volumes
in veterans with PTSD than in comparison subjects.
Bremner and colleagues (21) found that right hippocampal
volumes were 8% smaller in 26 veterans with PTSD than
in 22 civilians without PTSD. In addition, the PTSD group
exhibited poorer performance on a standard measure of ver-
bal memory, and their percent retention scores on this test
were directly correlated with right hippocampal volume
(i.e., lower scores were associated with smaller right hippo-
campal volumes). Gurvits and colleagues (58) used mMRI
to study seven Vietnam combat veterans with PTSD, seven
Vietnam combat veterans without PTSD, and eight nonvet-
erans without PTSD. These investigators found signifi-
cantly smaller hippocampal volumes bilaterally for the
PTSD group in comparison with both control groups.
Across the 14 veterans, hippocampal volume was inversely
correlated with extent of combat exposure and PTSD symp-
tom severity.

Similar hippocampal volumetric differences also have
been reported in mMRI studies of PTSD resulting from
childhood abuse. Bremner and colleagues (22) found 12%
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smaller left hippocampal volumes in 17 adult survivors of
childhood abuse with PTSD than in 21 nonabused compar-
ison subjects. Stein and colleagues (134) found 5% smaller
left hippocampal volumes in 21 adult survivors of childhood
sexual abuse (most of whom had PTSD) than in 21 non-
abused comparison subjects. Furthermore, total hippocam-
pal volume was smaller in abused subjects with high PTSD
symptom severity than in those with low PTSD symptom
severity. In contrast to these results, DeBellis et al. (36)
failed to find decreased hippocampal volumes in 44 mal-
treated children and adolescents with PTSD, compared
with 61 nonabused healthy subjects. However, the PTSD
group had smaller intracranial and cerebral volumes than
did the comparison group.

Taken together, the results of structural neuroimaging
studies of adult samples suggest that PTSD is associated
with reduced hippocampal volume, which, in turn, may
be associated with cognitive deficits and PTSD symptom
severity. Although the extent of traumatic exposure may be
correlated with hippocampal volume, it appears that differ-
ences between PTSD and control groups cannot be ex-
plained by traumatic exposure alone (58). The results of
DeBellis et al. (36) suggest that hippocampal volumetric
differences between groups may not be evident in samples
of children and adolescents or in samples of persons with
relatively recent traumatic exposures.

Stress, Glucocorticoids, and the
Hippocampus

In this review about neuroimaging of anxiety and stress
disorders, it is worth elaborating on the potential relation-
ship between stress and hippocampal findings in PTSD.
Animal research has provided evidence that stress is associ-
ated with damage to the hippocampus (16). For example,
sustained, fatal social stress in vervet monkeys was associated
with degeneration of neurons in the CA3 region of the
hippocampus (139); chronic restraint stress in rats was asso-
ciated with atrophy of apical dendrites of hippocampal CA3
pyramidal neurons (140); and exposure to cold water im-
mersion stress in rats was related to structural damage to
hippocampus (CA3 and CA2 fields) and deceased local CBF
in hippocampus (42).

The effect of stress on hippocampus appears to be me-
diated by glucocorticoid hormones. Exposure to glucocorti-
coids is associated with hippocampal damage in both rats
and primates. For example, Sapolsky et al. reported that
chronic exposure to corticosterone in rats led to a loss of
neurons in the CA3 region of the hippocampus (115).
Woolley and colleagues found that daily corticosterone in-
jections decreased dendritic branching and length in the
CA3 region of the rat hippocampus (145). In a study of
primates, Sapolsky et al. reported that chronic exposure to
cortisol (through steroid-secreting pellets stereotactically
implanted in hippocampus) was related to neuronal shrink-

age and dendritic atrophy in the CA3 region (117). More-
over, chronic stress during development is capable of inhib-
iting normal cellular proliferation within the hippocampus,
a process mediated by glucocorticoids and glutamatergic
transmission by an N-methyl-D-aspartate receptor–depen-
dent excitatory pathway (57).

Clinical research has also revealed decreased hippocampal
volumes in humans with elevated cortisol levels resulting
from Cushing’s syndrome (130); furthermore, in these pa-
tients, a treatment-related reduction of cortisol levels is asso-
ciated with increased hippocampal volumes (131). High
cortisol levels and decreased hippocampal volumes have also
been found in patients with major depressive disorder (25).
The hippocampus is also involved in the modulation of the
hypothalamic-pituitary-adrenal (HPA) axis, and lesions to
hippocampus appear to increase the release of glucocorti-
coids during stress (43,60); this, in turn, may further dam-
age the hippocampus (116).

Although these findings may have great relevance to anxi-
ety and stress disorders, the picture is complicated by the
finding that cortisol levels are characteristically reduced,
rather than elevated, in PTSD (147). One parsimonious
theory suggests that patients with PTSD suffer hypersensi-
tivity to glucocorticoids, resulting in both reduced levels of
cortisol (because of accentuated feedback inhibition) and
reduced hippocampal volume (147).

Functional Imaging Findings

Semple and colleagues used PET to study six patients with
combat-related PTSD and comorbid substance abuse versus
seven normal control subjects (125). rCBF was measured
in three conditions: resting state, an auditory continuous
performance task, and a word generation task. Compared
with the control group, the PTSD group exhibited greater
rCBF during both task conditions within orbitofrontal
cortex.

Rauch and colleagues studied a mixed-gender cohort of
eight subjects with PTSD, using PET and a script-driven
imagery method for inducing symptoms (104). In the pro-
voked versus control condition, patients exhibited increased
rCBF within anterior cingulate cortex, right orbitofrontal,
insular, anterior temporal and visual cortex, and right amyg-
dala. rCBF decreases occurred within left inferior frontal
(Broca’s area) and left middle temporal cortex. Interpreta-
tions of this initial study, with regard to the pathophysiology
of PTSD, were limited by the absence of a comparison
group.

Using a similar paradigm and a comparison group, Shin
and colleagues studied eight women with childhood sexual
abuse–related PTSD and eight matched trauma-exposed
control subjects without PTSD (129). In the traumatic ver-
sus neutral comparison, both groups exhibited anterior par-
alimbic activation. However, a group-by-condition inter-
action revealed that the control group manifested a
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significantly greater rCBF increase within anterior cingulate
cortex than did the PTSD group, whereas the PTSD group
showed significantly greater rCBF increases within anterior
temporal and orbitofrontal cortex. Bremner and colleagues
(20) also used script-driven imagery and PET to study rCBF
in ten female survivors of childhood sexual abuse with
PTSD and 12 without PTSD. Consistent with the findings
of Shin et al. (129), Bremner and colleagues (20) reported
relatively attenuated recruitment of anterior cingulate cortex
in the PTSD group.

Bremner and colleagues (23) studied rCBF responses to
trauma-related pictures and sounds in ten Vietnam veterans
with PTSD and in ten veterans without PTSD. In the com-
bat versus neutral comparison, the PTSD group exhibited
rCBF decreases in medial prefrontal cortex (subcallosal
gyrus) and anterior cingulate cortex. Liberzon and col-
leagues (76) used SPECT to study rCBF in 14 Vietnam
veterans with PTSD, 11 veteran control subjects, and 14
healthy nonveterans. In separate scanning sessions, subjects
listened to combat sounds and white noise. In the combat
sounds versus white noise comparison, all three groups
showed activation in anterior cingulate/medial prefrontal
cortex, but only the PTSD group exhibited activation in
the left amygdaloid region.

Bremner et al. (17) used PET to examine the effect of
yohimbine challenge on glucose metabolic rates in ten com-
bat veterans with PTSD and in ten nonveteran subjects
without PTSD. Yohimbine administration was associated
with increased anxiety and panic symptoms , as well as wide-
spread decreases in cerebral glucose metabolism in the
PTSD group.

Shin and colleagues studied seven patients with combat-
related PTSD and seven matched trauma-exposed control
subjects without PTSD in the context of a PET cognitive
activation paradigm (128). Subjects were required to make
judgments about pictures from three categories: neutral,
general negative, and combat-related. Subjects performed
two types of tasks: one involved responding while actually
seeing the pictures (perception), and another involved re-
sponding while recalling the pictures (imagery). In the com-
bat imagery versus control conditions, the PTSD group ex-
hibited rCBF increases in right amygdala and ventral
anterior cingulate gyrus and rCBF decreases in left inferior
frontal gyrus (Broca’s area).

Using another cognitive activation paradigm, Rauch et
al. studied the functional integrity of the amygdala in eight
combat veterans with PTSD and eight healthy combat vet-
erans (108). During fMRI, subjects viewed fearful and
happy faces temporally masked by neutral faces. Healthy
persons are typically aware of seeing only the neutral faces,
although they show amygdala activation to the masked fear-
ful faces (142). Rauch and colleagues found greater amyg-
dala activation to masked fearful faces in persons with PTSD
than in control subjects (108). Furthermore, the magnitude
of amygdala activation was correlated with PTSD severity.

These results suggest that PTSD may be characterized by
amygdala hyperresponsivity to general threat-related stim-
uli, consistent with our neurocircuitry model of PTSD.

Imaging Studies of Neurochemistry

Schuff and colleagues used mMRI and MRS to study seven
veterans with PTSD and seven nonveteran control subjects
(123). Although these investigators found a nonsignificantly
smaller (6%) right hippocampus in the PTSD group by
mMRI, they found an 18% reduction in right hippocampal
NAA by MRS, a finding suggestive of reduced density or
viability of neurons in this region.

DeBellis and colleagues used MRS to study NAA/cre-
atine ratios in 11 maltreated children and adolescents with
PTSD and 11 healthy comparison subjects without histories
of maltreatment (37). The PTSD group had lower NAA/
creatine ratios in pregenual anterior cingulate gyrus. This
result is consistent with those of symptom provocation PET
studies (20,23,129), which have reported failure to activate
anterior cingulate in PTSD.

Bremner et al. (18) used SPECT and [123I]iomazenil to
study benzodiazepine-receptor binding in 13 veterans with
PTSD and 13 nonveterans without PTSD. These investiga-
tors found decreased benzodiazepine-receptor binding in
prefrontal cortex in the PTSD group, relative to the control
group.

Summary

Taken together, data from neuroimaging studies are consis-
tent with the current neurocircuitry model of PTSD that
emphasizes the functional relationship among the amygdala,
hippocampus, and medial prefrontal cortex. Hippocampal
volumes and NAA levels appear to be decreased in persons
with PTSD. These findings dovetail with animal research
that points to a relationship among stress, HPA axis func-
tion, and cell viability within the hippocampus. Function-
ally, in comparison with control subjects, patients with
PTSD exhibit the following: (a) greater activation within
orbitofrontal cortex, anterior temporal poles, and the amyg-
dala; (b) diminished activation in anterior cingulate and
medial prefrontal cortex, as well as reduced NAA/creatine
ratios in pregenual anterior cingulate; and (c) decreased acti-
vation within widespread areas that are associated with
higher cognitive functions, such as Broca’s area and dorso-
lateral prefrontal cortex.

OBSESSIVE-COMPULSIVE DISORDER

Corticostriatal Model

One current neuroanatomic model of OCD focuses on cor-
ticostriatothalamocortical circuitry (98,106). According to
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this model, the primary disorder lies within the striatum
(specifically, the caudate nucleus). This leads to inefficient
gating at the level of the thalamus, which results in hyperac-
tivity within orbitofrontal cortex (corresponding to the in-
trusive thoughts) and hyperactivity within anterior cingulate
cortex (corresponding to anxiety, in a nonspecific manner).
Compulsions are conceptualized as repetitive behaviors that
are performed to recruit the inefficient striatum ultimately
to achieve thalamic gating and hence to neutralize the un-
wanted thoughts and anxiety.

Structural Imaging Findings

The results of several mMRI investigations of OCD have
suggested volumetric abnormalities involving the caudate
nucleus, although the nature of the observed abnormalities
has been somewhat inconsistent. Scarone et al. (119) studied
a mixed-gender cohort of 20 patients with OCD versus 16
matched controls and found increased right caudate volume
in the OCD group. Robinson et al. (111) studied a mixed-
gender cohort of 26 patients with OCD versus 26 matched
controls and found bilaterally decreased caudate volumes in
the OCD group. Jenike et al. (64) studied an all-female
cohort of ten patients with OCD versus matched controls
and found trends toward a rightward shift in caudate vol-
ume (p � .06) as well as overall reduced caudate volume
(p � .10) in the OCD group. Aylward et al. (3) studied a
mixed-gender cohort of 24 patients with OCD versus 21
matched controls and found no significant differences in
striatal volumes. Rosenberg et al. (112) studied 19 treat-
ment-naive pediatric subjects with OCD and 19 case-
matched psychiatrically healthy comparison subjects. These
investigators found reduced striatal volumes in the OCD
group and an inverse correlation between striatal volume
and OCD symptom severity.

Functional Imaging Findings

Neutral state paradigms employing PET and SPECT have
most consistently indicated that patients with OCD exhibit
increased regional brain activity within orbitofrontal and
anterior cingulate cortex, in comparison with neurologically
normal control subjects (6,7,78,89,113,136). Observed dif-
ferences in regional activity within the caudate nucleus have
been less consistent (6,113).

Pre/posttreatment studies have reported treatment-re-
lated attenuation of abnormal regional brain activity within
orbitofrontal cortex, anterior cingulate cortex, and caudate
nucleus (8,9,61,95,124,137). In addition, both pharmaco-
logic and behavioral therapies appear to be associated with
similar brain activity changes (8,124). Some treatment stud-
ies have also reported that lower pretreatment glucose meta-
bolic rates in orbitofrontal cortex predict a better response
to serotonergic reuptake inhibitors (24,118,136).

Symptom provocation studies employing PET (80,99)

as well as functional MRI (15) have also most consistently
shown increased brain activity within anterior-lateral orbit-
ofrontal cortex, anterior cingulate cortex, and caudate nu-
cleus during the OCD symptomatic state.

Cognitive activation studies using PET and fMRI have
probed the functional integrity of the striatum in OCD
(102,105). In these studies, patients with OCD perform
an implicit (i.e., nonconscious) learning paradigm shown
reliably to recruit striatum in healthy individuals (101,107).
In both studies, patients with OCD failed to recruit stria-
tum normally and instead activated medial temporal regions
typically associated with conscious information processing.

Imaging Studies of Neurochemistry

Several MRS studies have been performed to measure NAA
concentrations in patients with OCD versus healthy com-
parison subjects. Ebert and colleagues (41) found reduced
relative NAA levels in right striatum and anterior cingulate
cortex in 12 patients with OCD in comparison with six
healthy control subjects. Bartha and colleagues (5) found
lower left striatal NAA concentrations in 13 patients with
OCD than in 13 matched control subjects.

MRS has also been used to demonstrate elevated gluta-
matergic concentrations within the striatum of a child with
OCD (82). Glutamate is the principal transmitter mediat-
ing frontostriatal communication. Interestingly, elevated
striatal glutamate levels were attenuated toward normal after
successful pharmacotherapy. These findings suggest that or-
bitofrontal hyperactivity in OCD may be mirrored by ele-
vated glutamate at the site of orbitofrontal ramifications in
striatum, and treatment-related attenuation of orbitofrontal
activity may be accompanied by decreased glutamate con-
centration within the striatum.

Summary

Taken together, these neuroimaging findings are consistent
with disorders in corticostriatothalamocortical circuitry.
Consistent with the hypothesis of a primary abnormality in
the striatum, MRI and MRS studies of OCD have shown
reduced striatal volumes and reduced striatal NAA, respec-
tively. PET studies have revealed hyperactivity within orbit-
ofrontal cortex, and the magnitude of this hyperactivity pre-
dicts response to treatment. In addition, in neurologically
normal persons, the performance of repetitive motor rou-
tines does facilitate striatal recruitment in the service of thal-
amic gating, whereas this pattern is not readily demon-
strated in patients with OCD. These imaging data further
support the working model of striatal pathology and striato-
thalamic inefficiency, together with orbitofrontal hyperac-
tivity.
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SOCIAL AND SPECIFIC PHOBIAS

Neuroanatomic Models

Currently, there are no cohesive neuroanatomically based
models for the phobias (53,132). One possibility is that
phobias are learned and hence reflect another example of
fear conditioning to specific stimuli or situations. Alterna-
tively, phobias may represent the product of dysregulated
systems for detecting potentially threatening stimuli or situ-
ations. For instance, if humans have evolved a neural net-
work specifically designed to assess social cues for threaten-
ing content, and another to assess threat from small animals,
these may represent the neural substrates for the pathophysi-
ology underlying phobias.

Structural Imaging Findings

Given the high prevalence of phobias and the relative ease
with which medication-free phobic subjects without signifi-
cant comorbidities can be recruited, it is striking how few
imaging studies have been conducted in this arena. Potts et
al. used mMRI to examine volumetric measures of total
cerebrum, caudate, putamen, and thalamus in 22 patients
with SoP and in 22 matched healthy control subjects (96).
The groups did not significantly differ on any of these mea-
sures.

Functional Imaging Findings

Studies of SpP to date have principally employed PET
symptom provocation paradigms and have reported some-
what inconsistent results. Mountz and colleagues found that
persons with small-animal phobia exhibited increased heart
rates, respiratory rates, and subjective reports of anxiety dur-
ing exposure to phobic stimuli; however, no changes in
rCBF measurements were observed (88).

Wik and colleagues studied six patients with snake pho-
bias during exposure to videotapes of neutral, generally aver-
sive, and snake-related scenes (143). During the phobic con-
dition, they found significant rCBF increases in secondary
visual cortex and rCBF decreases in prefrontal cortex, poste-
rior cingulate cortex, anterior temporopolar cortex, and hip-
pocampus. These findings were similar to those of two other
studies of phobia from the same laboratory (50,51).

Using in vivo exposure and PET, Rauch and colleagues
studied rCBF in seven persons with a variety of small animal
phobias (100). In the provoked versus control condition,
patients with phobias exhibited rCBF increases within mul-
tiple anterior paralimbic territories (i.e., right anterior cin-
gulate, right anterior temporal pole, left posterior orbito-
frontal cortex, and left insular cortex), left somatosensory
cortex, and left thalamus.

Whereas one neutral-state SPECT study of patients with
SoP and healthy control subjects found no significant be-
tween-group differences in rCBF (133), more recent cogni-

tive activation studies performed in conjunction with fMRI
have yielded more informative results. Birbaumer et al. (11)
used fMRI to study seven patients with SoP and five healthy
control subjects during exposure to slides of neutral human
faces or aversive odors. In comparison with the control
group, the SoP group exhibited hyperresponsivity within
the amygdala that was specific to the human face stimuli.
In a follow-up study, Schneider et al. used fMRI to study
12 patients with SoP and 12 healthy control subjects (122).
The researchers used a classic conditioning paradigm in
which neutral face stimuli were the conditioned stimuli and
odors (negative odor and odorless air) served as the uncondi-
tioned stimuli. In response to conditioned stimuli associated
with the negative odor, the SoP group displayed signal in-
creases within amygdala and hippocampus, whereas healthy
comparison subjects displayed signal decreases in these re-
gions.

Imaging Studies of Neurochemistry

Davidson et al. (34) used MRS to study NAA in 20 patients
with SoP and in 20 healthy control subjects. Relative to the
control group, the SoP group exhibited decreased NAA in
white matter and cortical and subcortical gray matter (e.g.,
caudate and thalamus).

Tiihonen et al. used SPECT and I-123–labeled �-CIT
to measure the density of dopamine reuptake sites in 11
patients with SoP and in 28 healthy comparison subjects
(138). They found significantly reduced striatal dopamine
reuptake binding site density in the SoP versus control
group.

Summary

Although relatively few neuroimaging studies of SpP have
been conducted, findings from existing research suggest ac-
tivation of anterior paralimbic regions and sensory cortex
corresponding to stimulus inflow associated with a symp-
tomatic state. Although such results are consistent with a
hypersensitive system for assessment of or response to spe-
cific threat-related cues, they do not provide clear anatomic
substrates for the pathophysiology of SpP. Cognitive activa-
tion neuroimaging studies of SoP reveal exaggerated respon-
sivity of medial temporal lobe structures to human face
stimuli; this hyperresponsivity may reflect a neural substrate
for social anxiety in SoP.

PANIC DISORDER

Neuroanatomic Models

Neurobiological models of PD have emphasized a wide
range of disparate elements (31). Satisfactory models of PD
must account for spontaneous panic attacks, which are a
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defining feature of PD. It is possible that spontaneous panic
corresponds to a normal physiologic anxiety response that
is mediated by intact fear-anxiety circuits but, owing to
homeostatic deficits, occurs in inappropriate, threat-free sit-
uations. This is consistent with theories of hypersensitivity
to carbon dioxide at the level of the brainstem (i.e., the
suffocation false alarm model), as well as theories regarding
fundamental monoaminergic dysregulation. Another possi-
bility is that panic attacks emerge in the context of what
should be minor anxiety episodes because of failures in the
systems responsible for limiting such normal responses; hip-
pocampal deficits may underlie such a failure to inhibit
anxiety responses. Finally, panic episodes described as spon-
taneous (i.e., without identifiable precipitants) could reflect
anxiety responses to stimuli that are not processed at the
conscious (i.e., explicit) level, but instead, recruit anxiety
circuitry without awareness (i.e., implicitly). There is strong
evidence that the amygdala can be recruited into action in
the absence of awareness that a threat-related stimulus has
been presented (142). By this model, PD may be character-
ized by fundamental amygdala hyperresponsivity to subtle
environmental cues, triggering full-scale threat-related re-
sponses in the absence of conscious awareness.

Structural Imaging Findings

Fontaine et al. (48) published a qualitative MRI study in-
volving 31 patients with PD and 20 matched healthy con-
trol subjects. The frequency of gross structural abnormalities
was higher in the PD group (40%) than in the control
group (10%); the most striking focal findings in the PD
group involved abnormal signal or asymmetric atrophy of
the right temporal lobe.

Functional Imaging Findings

In an initial PET neutral-state study, Reiman and colleagues
studied 16 patients with PD and 25 normal control subjects
(109). In the subset of patients who were vulnerable to
lactate-induced panic (n � 8), the investigators found ab-
normally low left/right ratios of parahippocampal blood
flow. DeCristofaro et al. used SPECT to measure rCBF at
rest in seven treatment-naive patients with PD and in five
age-matched healthy control subjects (38). Relative to the
control group, the PD group exhibited elevated rCBF in
left occipital cortex and reduced rCBF in the hippocampal
area bilaterally. Nordahl et al. used PET and FDG to mea-
sure regional cerebral metabolic rate glucose (rCMRglc) in
12 patients with PD and 30 normal control subjects during
an auditory continuous performance task (90). The investi-
gators found that the PD group exhibited a lower left/right
hippocampal ratio. In a follow-up experiment (91), these
investigators used PET-FDGmethods to study imipramine-
treated subjects with PD and found a rightward shift in
symmetry of rCMRglc within hippocampus and posterior

inferior frontal cortex. In comparison with the untreated
group, the imipramine-treated group exhibited rCMRglc
decreases in posterior orbital frontal cortex. Bisaga et al.
(12) used PET and FDG to study a cohort of six women
with PD and six matched control subjects. In contrast to
previous studies, the PD subjects displayed elevated
rCMRglc in the left hippocampus and parahippocampal
area.

The literature contains three symptom provocation stud-
ies of PD, all of which have employed pharmacologic chal-
lenges. Stewart et al. used SPECT and the xenon inhalation
method to measure CBF during lactate infusion in ten pa-
tients with PD and in five healthy control subjects (135).
The patients with PD who experienced lactate-induced
panic attacks (n � 6) displayed global cortical CBF de-
creases. Woods et al. used SPECT and yohimbine infusions
to study six patients with PD and six normal control subjects
(144). In the PD group, yohimbine administration in-
creased anxiety and decreased rCBF in bilateral frontal cor-
tex. In a PET study, Reiman et al. measured rCBF during
lactate infusions in 17 patients with PD and in 15 normal
control subjects (110). The eight patients who suffered lac-
tate-induced panic episodes exhibited rCBF increases in bi-
lateral temporopolar cortex and bilateral insular cortex/
claustrum/putamen. Healthy control subjects and patients
with PD who did not experience lactate-induced panic at-
tacks did not exhibit such rCBF changes. Of note, the tem-
poropolar findings were subsequently questioned as possibly
reflecting extracranial artifacts from muscular contractions
(40,10). In a symptom capture case report, Fischer and col-
leagues (44) found that a spontaneous panic attack was asso-
ciated with rCBF decreases in right orbitofrontal, prelimbic
(area 25), anterior cingulate, and anterior temporal cortex.

Imaging Studies of Neurochemistry

Dager and colleagues used MRS to measure brain lactate
levels during hyperventilation in seven treatment-responsive
patients with PD and in seven healthy comparison subjects
(32). The PD group showed a significantly greater rise in
brain lactate in response to the same level of hyperventila-
tion. Dager et al. also used MRS to measure brain lactate
levels during lactate infusions in 15 patients with PD and
in ten healthy comparison subjects (33). The PD group
exhibited a significantly greater brain lactate level during
lactate infusion, a finding consistent with the interpretation
of reduced clearance, rather than higher production, of lac-
tate in PD.

Three studies have used SPECT and [123I]iomazenil to
measure benzodiazepine-receptor binding in PD. Kuikka et
al. (68) studied 17 subjects with PD and 17matched healthy
comparison subjects and found that the PD group exhibited
a greater left/right ratio in benzodiazepine-receptor uptake
that was most prominent in prefrontal cortex. Brandt et al.
(13) studied 12medication-naive patients with PD and nine
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matched healthy control subjects and found that the PD
group exhibited significantly elevated benzodiazepine-re-
ceptor binding within right supraorbital frontal cortex, as
well as a trend toward elevated binding in the right temporal
cortex. Bremner et al. (19) included 13 patients with PD
and 16 healthy comparison subjects and found that the PD
group showed decreased benzodiazepine-receptor binding
in left hippocampus and precuneus.

Using PET and carbon-11–labeled flumazenil, Malizia
et al. studied seven patients with PD and eight healthy com-
parison subjects (79). These investigators found that the
PD group exhibited a global reduction in benzodiazepine
binding that was most pronounced in right orbitofrontal
and right insular cortex.

Summary

Resting state neuroimaging studies have suggested abnormal
hippocampal activity in PD. Symptom provocation studies
have revealed reduced activity in widespread cortical re-
gions, including prefrontal cortex, during symptomatic
states. MRS studies have reported greater brain lactate levels
in response to hyperventilation and lactate infusions. Fi-
nally, receptor-binding studies of PD suggest widespread
abnormalities in the GABAergic/benzodiazepine system.
Consistent with prevailing neurobiological models of PD,
it is possible that fundamental abnormalities in monoami-
nergic neurotransmitter systems, originating in the brain-
stem, underlie the abnormalities of metabolism, hemody-
namics, and chemistry found in widespread territories of
cortex. Further, regional abnormalities within the medial
temporal lobes provide some support for theories regarding
hippocampal or amygdala dysfunction in PD.

CONCLUSIONS AND FUTURE DIRECTIONS

Neuroimaging research is helping to advance neurobiologi-
cal models of anxiety and stress disorders. At the current
early stage of this scientific enterprise, there are hints of
commonalities across anxiety disorders as well as leads re-
garding disorder-specific features. Beyond the need for a
general expansion of the existing database, it will be critical
to explore the specificity of initial findings by conducting
studies with psychiatric comparison groups in addition to
healthy control subjects. This is of particular relevance to
the concept of stress disorders, in which common etiologic
factors or vulnerability factors may have corresponding
pathophysiologic profiles that are independent of our cur-
rent diagnostic scheme. For instance, the relationship be-
tween early or chronic life stress and hippocampal structure
and function may well span anxiety, mood, and even psy-
chotic disorders. In this light, longitudinal and develop-
mental studies may be of particular importance in elucidat-
ing the neural correlates and consequences of stress.

Similarly, genetic studies in animals and humans will benefit
from neuroimagingmethods that can illuminate the bidirec-
tional link from behavior to brain structure, function, and
chemistry. For instance, research regarding the heritability
of anxious temperament may be enhanced by using ex-
tended phenotypes of conditionability or distributed brain
function within amygdala, hippocampus, and medial fron-
tal cortex. In fact, the gamut of existing animal and human
experimental paradigms with relevance to anxiety and stress
disorders provides a promising context for advancing inte-
grated models across scales and neuroscientific modes of
inquiry. As such integrated models evolve, targets for new
and improved neuropsychopharmacotherapies are destined
to emerge. Indeed, neuroimaging is likely to play a role not
only in conceptually motivating but also in discovering and
testing such new therapies as part of the next generation of
progress in this domain.
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27. Büchel C, Dolan RJ. Classical fear conditioning in functional
neuroimaging. Curr Opin Neurobiol 2000;10:219–223.
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