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ENDOPHENOTYPES IN STUDIES OF
THE GENETICS OF SCHIZOPHRENIA

DAVID L. BRAFF
ROBERT FREEDMAN

The power and appeal of the molecular biology mantra,
‘‘DNA to RNA to protein,’’ to explicate cell biology comes
from its universal appearance and application in all species,
from microorganisms to human beings. Based on this man-
tra, the genomes of viruses, bacteria, fruit flies, and now
humans are being mapped and sequenced, so that all the
genes and, ultimately, their corresponding biological activ-
ity can be identified. As these genes are identified, it is
reasonable to ask how this information can be related to
the inheritance of risk for psychiatric illness. For a bacterial
enzyme, genetic coding of the amino acid sequence of pro-
teins can be closely associated with a functional change in
enzymatic activity. For a complex psychiatric illness, as de-
fined by DSM-IV criteria, the relationship is obviously not
as straightforward. Psychiatric illnesses such as schizophre-
nia are generally conceptualized as multifactorial and most
likely reflect the combined influence and interactions of
both genetic and nongenetic factors. Furthermore, there is
no reason to presuppose that only one gene is responsible
for a complex psychiatric disorder such as schizophrenia, as
there is in some simple mendelian illnesses. Persons who
are ill may differ in more than one gene from the rest of
the population, and different sets of genes may be associated
with illness in different populations. Thus, how best to use
the power of molecular genetics to understand the inheri-
tance and pathophysiology of complex genetic psychiatric
illnesses remains an enigma that is only now beginning to
be solved.
In the simplest and most commonly used strategy of

molecular genetics that is applied to complex psychiatric
disorders, it is assumed that the distribution of illness in a
family represents the effect of a single gene, and techniques
of genetic analysis are used to identify that gene. This ap-
proach does not necessarily overlook the complexity of psy-
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chiatric illness, but it assumes that the effect (i.e., signal)
of a single gene will be discerned in a complex, ‘‘noisy’’
genetic background if samples sizes are large enough or if
the population is sufficiently homogeneous (e.g., 1). An
attractive feature of this approach is that the search for genes
is not constrained by preexisting hypotheses about the biol-
ogy of the illness, which, in the case of schizophrenia, is
still unclear. A second commonly applied strategy is, in fact,
the opposite approach; an assumption is made about the
biology of the illness and then candidate genes associated
with that biology are examined to determine if they are
mutated. Both approaches have been successful to a limited
extent for explicating the genetics of schizophrenia. Replica-
ble linkages for schizophrenia have been obtained at several
locations (e.g., chromosomes 1, 6, 8, 13, 15, and 22), but
genetic mutations have not as yet been identified at these
sites (2). On the other hand, DNA mutations have been
found in candidate genes such as NURR1, the gene for the
receptor for retinoic acid, a pathway critical in neuronal
development, but these mutations seem to be found in only
a small proportion of schizophrenic patients (3).
This chapter describes a third approach, which attempts

to make use of the power of the molecular biology mantra
by identifying brain dysfunctions that may be caused by a
single genetic abnormality. The rationale comes from the
mantra itself. If discrete genetic abnormalities are associated
with schizophrenia, then each of them should cause a spe-
cific protein change that is reflected in a corresponding dis-
crete functional abnormality. Even if several genes are ab-
normal, along with additional environmental factors, the
functional abnormality resulting from each gene should
generally be identifiable. Theoretically, the relationship be-
tween these functional abnormalities and genes, discovered
either by genetic linkage or by candidate gene analysis,
should be stronger than the association to the illness itself
because the illness itself results from amixture of genetic and
nongenetic abnormalities that may vary between different
individuals and families. As is true for the other approaches
described above, this approach has not yet led to the identifi-
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cation of the genes that are associated with and that may
even cause schizophrenia in most cases. Nevertheless, the
strategy has been useful for gene discovery in other complex
illnesses, such as colon cancer and hemochromatosis. In
colon cancer, the formation of multiple polyps, rather than
cancer itself, has been found to be the genetically heritable
trait (4), and in hemochromatosis, a high serum level of
iron, rather than the clinically recognized illness, has been
found to be the more penetrant heritable trait (5).

Endophenotype is often used as the descriptive term for
these discrete, genetically determined phenotypes that may
be part of a complex illness. The search for endophenotypes
is not straightforward because no a priori criterion can be
used to decide if a particular element of schizophrenia or
any other psychiatric illness reflects the effect of a single
gene. Putative endophenotypes have ranged from clinical
characterizations, such as the presence of schizotypy in rela-
tives of schizophrenic patients (6), to the neurophysiologic
and neuropsychological measures described in this chapter,
to structural measures of specific, functionally important
regions of the brain and ventricular size. Because none of
these phenotypes has yet led to the identification of a spe-
cific molecular deficit, it has not been proved that any one

TABLE 51.1. ENDOPHENOTYPES AND THE GENETICS OF SCHIZOPHRENIA: EFFECT SIZE
DIFFERENCES BETWEEN SCHIZOPHRENIA SPECTRUM GROUPS AND NORMAL COMPARISON
SUBJECTS

Clinically Unaffected
Schizophrenia Relatives of Schizotypal Personality

Phenotypes Patients Schizophrenia Patients Disorder Patients References

P50 Suppression 0.92–1.29 0.79 0.79 30, 31, 203
Prepulse Inhibition 0.51–0.85 1.0 1.45 46, 47, 54
Smooth-Pursuit Eye 2.0–3.0 0.29–1.3 0.29 92, 93, 204

Movement
Antisaccade 4.88–6.38 1.38–3.75 0.75–1.36 101, 204
Executive Functioning 0.47–1.97 0.73–1.6 0.72 118, 126, 127, 132

(Wisconsin Card
Sorting Test)

Working Memory 1.42–2.2 0.42 0.73–1.04 126, 132, 205
(Letter–Number Span)

Thought Disorder 1.56–2.98 0.34–0.83 1.04–1.28 204, 206–208
(Thought Disorder Index;
Ego Impairment Index)

Continuous Performance 0.45–3.30 0.46–2.97 0.45–0.78 118, 139, 140, 147
Test

Span of Apprehension 0.5–2.5 0.6–1.5 139, 152, 209–212
Visual Backward Masking 0.33–0.65 0.43–0.57 0.45–0.67 168, 173, 213, 214
P300 Event–Related 0.45–1.05 0.17 0.36 192, 215

Potential
Reaction Time 0.59–1.05 0.44 0.79–0.99 168, 216, 217

Effect sizes in schizophrenia patients, clinically unaffected relatives of schizophrenia patients, and schizotypal personality disorder
patients compared with those in normal subjects. These effect sizes were computed by using the means and standard deviations
for the normal comparison subjects and the means of the patient groups. The range of values differs from study to study because
different investigators used different patient populations taking different types and amounts of medications; also, the 
experimental paradigms, although similar, often differed in terms of stimulus parameters. Of course, in some of these studies,
multiple conditions were used, some of which were needed to establish floor and ceiling effects. In these cases, we generally cite
the most robust effect sizes.

of them is actually linked to a specific genetic abnormality.
In this context, even if endophenotypes turn out to be mul-
tiple, rather than single, gene phenomena, their genetic ar-
chitecture, even as complex endophenotypes, may turn out
to be simpler than schizophrenia in certain families. The
sections below outline the stage of investigation for a num-
ber of putative phenotypes, from presence in schizophrenia
probands and their relatives to statistically significant ge-
netic linkage to a chromosomal locus.
Several points must be considered in the assessment of

endophenotypes. First, because these are putative genetic
traits, their biology begins at conception, so that by the
time they are measured in adulthood, their expression may
have been modified by such factors as development, aging,
brain injury, and medication and substance abuse and. Sec-
ond, most genes expressed in the brain are expressed in
many different brain areas, so that their ultimate functional
expression may involve much more than the simple pheno-
type being measured. Third, many genes expressed in the
brain are also involved in the development of neurons, so
that their most important functional effects may have oc-
curred prenatally. Fourth, according to Mendel’s second
law, every genetic trait segregates independently in a family,
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so that if schizophrenia is a multifactorial trait, some siblings
should express specific phenotypes independently of other
phenotypes. These siblings may be better subjects for char-
acterizing the phenotype than the patients themselves,
whose multiple deficits may obscure the unique phenotype.
Finally, because the aim of genetics generally is to identify
affected individuals who have or do not have a particular
genetic abnormality, the measurement of the putative phe-
notype must clearly separate most affected and unaffected
individuals, regardless of whether a quantitative or discrete
variable is used. The range of effect sizes for several putative
endophenotypes is shown in Table 51.1, which reflects an-
other point. Themeasurement of endophenotypes is in itself
a complex endeavor in which modest-appearing paradig-
matic manipulations lead to significant shifts in the signal
of the dependent measure being assessed.
The search for endophenotypes takes advantage of ge-

netic strategies to evaluate the current state of understanding
the pathophysiology of schizophrenia. The initial endophe-
notype was schizotypy, which was proposed to be a pure
expression of schizotaxia, the genetic predisposition for
schizophrenia. Schizotypy itself does not generally show
mendelian segregation, so that the likelihood that it reflects
a single genetic trait is now considered small. However, the
presence of schizotypy in family members has been related
to linkage of schizophrenia at a specific chromosomal locus
in a subset of families, so that a reexamination of schizotypy
as an endophenotype in some families may once again be
productive. Inhibitory interneurons have increasingly be-
come a focus of interest in the biology of schizophrenia.
Many of the endophenotypes described below are attempts
to demonstrate inhibitory neuronal function by means of
psychophysiologic and neurophysiologic techniques. Struc-
tural phenotypes have been limited to the measurement of
brain volume. As functional brain-imaging techniques be-
come more advanced, so that specific neuronal functions
can be demonstrated, it is likely that these techniques will
also be used. Magnetic resonance spectroscopy of the amino
acids associated with neuronal function, such as N-acetyl-
asparate, is an example (7).

CANDIDATE ENDOPHENOTYPES FOR
GENETIC STUDIES

Given the considerations discussed above, it is important
to stress that although the DSM-IV diagnostic criteria for
schizophrenia may be clinically and administratively useful,
they are not likely to be optimally useful as phenotypes
in genetic studies (8–11). The search for and use of new,
nondiagnostic, non–DSM-IV-based candidate endopheno-
types parallels our search for the corresponding candidate
genes in complex human genetic disorders such as schizo-
phrenia. Also, we understand that in accounting for the
genetic diathesis or vulnerability to schizophrenia, we are

‘‘accounting’’ for, at most, 50% to 70% of the variance of
the disorder; the remaining variability resides in nongenetic
‘‘second hits,’’ such as neonatal or in utero neural damage
to the developing hippocampus (12–15) or other factors.
A plethora of studies indicate that in addition to mutant
genes, a second level of environmental or other generalized
or specific stressor probably must act as a second hit in the
central nervous system. An example of the result of this
need for a second hit is illustrated by the fact that clinically
‘‘unaffected’’ relatives of patients with schizophrenia have
endophenotypic markers of abnormalities in some or all of
the measures listed below but do not have the disorder of
schizophrenia. Therefore, it appears clear that some nonge-
netic contributions (not necessarily reflected by these endo-
phenotypes) are crucially important in the expression of
some forms of this elusively heterogeneous and complex
disorder of schizophrenia. In searching for non–diagnosis-
based ‘‘candidate endophenotypes,’’ we are not alone in
schizophrenia research because many disorders, from diabe-
tes to hypertension to bipolar disorder, also present the same
conundra and difficult conceptual issues.
In schizophrenia research, it seems reasonable to classify

candidate endophenotypes into structural and functional
abnormalities. Because of limits of chapter length, we do not
discuss structural endophenotypes (e.g., widely dispersed,
decreased, generalized gray matter; decreased superior tem-
poral gyrus volume; deficits of hippocampal or temporal
lobe volume (16); gray matter volume or organizational ab-
normalities in various subsections of the prefrontal cortex,
most significantly the dorsolateral prefrontal cortex) that
may be useful in genetic studies (17,18). It is important to
note that such structural abnormalities may be correlated
with some of the functional abnormalities discussed below.
In Table 51.1, some functional endophenotypes are listed,
along with estimates of the effect sizes of deficits of each
in schizophrenic patients, clinically unaffected relatives of
schizophrenic patients, and schizotypal patients in compari-
son with normal subjects. In addition, reasonable and well-
understood neural substrates for these measures are known,
as discussed. Table 51.1 summarizes what we have selected
as important and representative (but not all-inclusive) can-
didate endophenotypes for genetic studies in schizophrenia,
with an emphasis on the information-processing abnormali-
ties that have assumed a central role in the search for candi-
date endophenotypes (10,11). Identifying these endophe-
notypes for genetic studies is only a first step; after they
have been identified, complex strategies must be employed,
as discussed above and below, to conduct linkage, associa-
tion, and other genetic studies on the candidate endopheno-
types so that we can identify the candidate genes that are
likely contributing to the endophenotypes (and their neural
substrates) present in the complex disorder of schizophrenia.
In the next section, we describe possible functional endo-
phenotypes, with an emphasis on gating and oculomotor
abnormalities.
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Abnormalities of Sensorimotor Gating

The concept of deficits of sensory gating in schizophrenia
derives from the clinical observation that patients report
failures of information processing characterized by poor sen-
sory gating—an inability to screen out trivial stimuli and
focus on salient aspects of the environment so as to process
information smoothly and successfully navigate through life
(10,19,20). Gating functions are commonly assessed with
P50 suppression and prepulse inhibition (PPI) of the startle
response.

P50 Suppression

Initial studies at the University of Colorado have identified
P50 suppression as an important candidate endophenotype
in studies of schizophrenia (21–24). In a typical paradigm,
P50 suppression occurs when two clicks are presented with
a 500-millisecond interval between them. The small P50
event potential wave elicited by the click stimulus can be
identified when many trials (e.g., 30 to 100 or more) are
performed; this number of trials plus various filtering strate-
gies provides investigators with a robust signal-to-noise ratio
for identifying and quantifying the P50 wave. A P50 wave
is generated to the first click and another to the second
click. Across multiple studies, it has been found that the
second P50 wave is normally suppressed; suppression can
probably be attributed to the activation of inhibitory pro-
cessing and circuitry by the first P50 stimulus. In normal
subjects, the second P50 wave typically is diminished by
80% in comparison with the first wave (Fig. 51.1).
Initial studies (21–24) demonstrated an expected failure

FIGURE 51.1. Pairs of auditory clicks are presented to subjects and EEG is averaged across trials.
The P50 component of the auditory event-related potential is measured in response to the first
and second clicks.

of suppression in schizophrenic patients, consistent with
theories of failed inhibitory function or impaired sensorimo-
tor gating in schizophrenia (25). These studies of deficits in
P50 suppression in schizophrenic patients have been widely
replicated (26–31). The failure of P50 suppression in
schizophrenic patients is not necessarily specific to this one
disorder. For example, Franks et al. (32) reported that P50
suppression is also deficient in patients with acute mania
but ‘‘normalizes’’ with time, whereas the deficits of P50
suppression are more persistent in schizophrenic patients
(32). This finding is consistent with the idea that genetic
‘‘diatheses’’ may be shared between schizophrenia and
mania. P50 suppression deficits have also been shown (and
replicated) in ‘‘clinically unaffected’’ family members of
schizophrenic patients (24,31,33–35). The P50 suppression
abnormalities of these family members normalize following
administration of the cholinergic nicotinic receptor stimu-
lant nicotine (36), as do those of schizophrenic patients
(37). This finding has raised interest in the critical impor-
tance of the cholinergic system in P50 suppression, and
some of the cholinergic neurobiological substrates of P50
suppression deficits have been elucidated.
As discussed in the section on PPI, suppression is proba-

bly the function of a more wide-ranging neural circuitry
prominently involving hippocampal structures (38). The
use of P50 suppression as a candidate endophenotype in
genetic studies is probably the most advanced of any of the
endophenotypes we discuss here; a specific linkage of P50
suppression with a genetic marker at the locus of the �7
subunit of the nicotinic receptor gene (11) has been identi-
fied in the first study linking a candidate endophenotype
of information processing in schizophrenia to a specific
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chromosomal region. It is important to stress that these
types of studies do not identify a ‘‘schizophrenia endophe-
notype,’’ but rather the linkage of deficits in P50 suppres-
sion (characteristic of schizophrenia) to a specific chromo-
some region. Future studies will have to identify the specific
genetic deficit(s) (e.g., specific single-nucleotide polymor-
phisms) associated with abnormalities of P50 suppression.
In terms of our assessment of candidate endophenotypes

and genetic studies, it is important to note that medications
have an influence on P50 suppression abnormalities in
schizophrenia. It appears that atypical antipsychotic medica-
tions may reverse the P50 suppression deficits in schizo-
phrenic patients (39–42). If these initial results continue
to be confirmed, the search for candidate endophenotypes
will be complicated by the fact that atypical (and perhaps,
in some circumstances, typical) antipsychotic medications
are increasingly being utilized as first-line agents in the treat-
ment of schizophrenia. We may thus face the circumstance
of examining schizophrenic patients whose P50 suppression
deficits have been ‘‘normalized’’ and then conducting family
studies in which these deficits may appear in unaffected
relatives of schizophrenic patients. Should this occur, ge-
netic statistical strategies will have to be utilized that will
allow us to ‘‘exclude’’ the ‘‘normalized’’ schizophrenic pa-
tient from analysis and utilize only clinically unaffected fam-
ily members in genetic (e.g., linkage) studies. Much more
information will be generated in the next several years, and
the use of what we would term ‘‘null proband’’ strategiesmay
be necessary as schizophrenic patients who are not medi-
cated or are neuroleptic-naı̈ve become more difficult to as-
certain and are replaced by patients treated with atypical
antipsychotic medications. In addition, the use of drug
withdrawal strategies to unmask endophenotypic markers
has come under increasing criticism (43) and is becoming
more difficult to justify ethically in comparison with other
promising research strategies (e.g., 44).

Prepulse Inhibition of the Startle Response

Since 1978 (45), PPI deficits of the startle response have
been consistently identified in schizophrenic patients. PPI
of the startle response occurs as follows. Normally, an in-
tense and powerful sensory stimulus elicits a whole-body
startle response in almost all mammals. This rapid, intense
sensory stimulus may be sound or light, or it may be tactile
(e.g., an air puff). When a weak prestimulus precedes the
startling stimulus by approximately 100 milliseconds, PPI
occurs. Schizophrenic patients and their relatives show defi-
cits in PPI (45–54) (Fig. 51.2). This is the second com-
monly studied form of sensorimotor gating (along with P50
suppression) (see ref. 25 for a discussion of gating abnormal-
ities in schizophrenia). PPI is being increasingly used in
schizophrenia research. It is important to distinguish the
PPI paradigm described above from a similar but quite dis-
tinct paradigm in which attentional allocation to the pre-

FIGURE 51.2. Across all prepulse-to-pulse intervals tested, the
schizophrenic patients showed a loss of gating effect of the pre-
pulse that preceded the startle stimulus. (From Braff DL, Grillon
C, Geyer MA. Gating and habituation of the startle reflex in
schizophrenic patients. Arch Gen Psychiatry 1992;49:206–215,
with permission.)

pulse (55) is used in an attempt to increase the degree of PPI.
The PPI paradigm typically used in schizophrenia research,
described above, is a ‘‘neutral’’ or ‘‘uninstructed’’ paradigm
that largely taps into involuntary and automatic information
processing (56); the instructed paradigm is different because
subjects attend to the prepulse and thus the paradigm identi-
fies so-called voluntary attentional deficits. This section de-
scribes the more widely studied uninstructed PPI.
Much like deficits of P50 suppression, PPI deficits are

not unique to schizophrenia. PPI deficits are characteristic
of a ‘‘family’’ of disorders in which cognitive, sensory, and
motor information undergoes a failure of gating. Patients
with gating disorders include those with schizophrenia
(45–53), obsessive-compulsive disorder (with obsessive and
ungated ideas) (57), and Huntington syndrome (58) and
Tourette syndrome (59) (with ungated motor activity).
The clinical correlates of PPI in schizophrenia comprise

a rich database. PPI deficits have been correlated with dis-
tractibility (60), perseverative responses on the Wisconsin
Card Sorting Test (61), and most prominently thought dis-
order (62), especially when PPI and thought disorder are
measured at the same time (63). These deficits are also asso-
ciated with an earlier age of onset (51). Modest correlations
have been found with both positive and negative symptoms,
and the symptom correlates may be associated with subcor-
tical dopamine hyperactivity and reciprocal frontal dopa-
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mine hypoactivity (47). An initial report has described PPI
deficits in clinically unaffected family members of schizo-
phrenic patients (54), and further work is needed to under-
stand the heritability pattern of PPI deficits in family mem-
bers of schizophrenic patients. Much of what is known
about the neural substrate of PPI can be attributed to the
extensive work of Swerdlow, Geyer, Braff, and their associ-
ates. It appears that PPI is modulated mostly by the ventral
cortico-striato-pallido-thalamic (CSPT) circuitry originally
described by Swerdlow and Koob (64), based on the pi-
oneering work of Penney, Alexander, and Young on the
dorsal loci of the CSPT circuits. The circuitry cannot be
described in detail here, but lesion infusion studies and a
variety of other strategies have established the animal model
of PPI deficits in schizophrenia as a robust area of study
(65–67). For example, in rat pups with ventral hippocampal
lesions, PPI levels are normal until adolescence, when PPI
deficits appear (68,69), a finding that supports the neurode-
velopmental model of PPI deficits as it applies to an inte-
grated model of schizophrenia. Apomorphine used as a do-
pamine D2 agonist induces PPI deficits that are reversible
with typical or atypical antipsychotic medications. Phency-
clidine induces PPI deficits that are differentially reversed
by atypical (but not typical) antipsychotic medications. The
interested reader is referred to Swerdlow et al. (70) for fur-
ther discussion of these issues.
Some initial results utilizing between-subjects rather than

the more compelling within-subjects designs indicate that
PPI deficits in schizophrenic patients may be reversed or
‘‘normalized’’ by antipsychotic medications (51,53); how-
ever, no linkage studies have utilized PPI, although the ge-
netic contributions to PPI have been elucidated by the fact
that PPI levels differ in different rat strains (71), and differ-
ential sensitivity to PPI deficits has been observed in these
strains (72–74). The increasing use of isolation rearing
(75–78) and knockout mice (79–82) in PPI studies will
undoubtedly yield muchmore information about the neural
and genetic contributions to PPI. In parallel, human linkage
studies (already in progress) are being conducted.

Oculomotor Function

Oculomotor function is another important measure that
has been used in schizophrenia research. As in gating, two
fundamental paradigms have been utilized: eye tracking,
or smooth pursuit, and the antisaccade task. Eye-tracking
dysfunction in schizophrenic patients was first reported by
Diesendorf and Dodge (83), and their work was later ex-
tended by numerous investigators, including Holzman and
colleagues (84,85). Across quantitative and qualitative stud-
ies, the eye-tracking deficits seen in schizophrenia have been
well documented (86–89).

Smooth-Pursuit Eye Movement

In a typical study of smooth-pursuit eye movement, a signal
is presented to subjects on a computer screen and their

ability to track the target smoothly is assessed. Schizophrenic
patients do not track the target smoothly; they exhibit frag-
mented eye movements and resulting eye movement abnor-
malities, such as ‘‘catch-up’’ saccades. This task has been
very useful in family studies; clinically unaffected family
members of schizophrenic patients also exhibit eye move-
ment dysfunctions that typically involve an inability to fol-
low a target smoothly, which leads to a variety of abnormali-
ties, including ‘‘catch up’’ saccades (85,86,88,90–94). In a
series of studies, Siever et al. (95) and others (91,93,96,97)
also reported abnormalities of smooth-pursuit eye move-
ment in schizotypal patients.

Antisaccade Task

The antisaccade task has also been widely employed in schiz-
ophrenia research as another oculomotor task and as a po-
tential endophenotype. In the antisaccade task, the subject
first fixates on a centrally presented visual cue. A target
stimulus is then presented to the left or right of the fixation
stimulus, and the subject is instructed to look away from
the target stimulus; if the stimulus is presented 3 degrees
to the left of the fixation point, the subject is expected to
look 3 degrees to the right and inhibit the natural tendency
to ‘‘follow’’ the target to the left. Voluntary inhibitory func-
tions are utilized to suppress the normal tendency to look
at the target stimulus and gaze in the opposite direction.
This task, like some of the other measures discussed above,
uses inhibition and is largely volitional (like smooth-pursuit
eye movement) rather than automatic (like gating). Schizo-
phrenic patients show marked deficits in performing this
task; an initial gaze directed toward rather than away from
the target stimulus is characteristic (98–101). The magni-
tude (i.e., effect size) of the performance deficits in schizo-
phrenic patients and clinically unaffected family members
is large (Table 51.1), and the large difference in effect size
between probands and normal comparison subjects makes
the antisaccade task an excellent candidate endophenotype
for genetic studies (101,102). Within the schizophrenia
spectrum, it is notable that antisaccade deficits occur in
family members of schizophrenic patients and in patients
with schizotypal personality disorder (96,101,103,104). In
this way, the antisaccade deficit meets the second criterion
for a candidate endophenotype—that is, a candidate endo-
phenotype should appear in clinically unaffected family
members of schizophrenic patients (and perhaps in schi-
zotypal patients).

Neuropsychological Tasks

A plethora of candidate endophenotypes have been derived
from the neuropsychological literature. It is well-known that
schizophrenic patients exhibit a wide range of neuropsycho-
logical deficits (105,106) and that these deficits extend to
clinically unaffected family members (107). Deficits have
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been reported in several important domains: (a) executive
function, as assessed by the Wisconsin Card Sorting Test
(108); (b) working memory, as assessed by the Letter–Num-
ber Span (109), and (c) thought disorder, commonly derived
from the processing of stimuli from the Rorschach Test
to yield the Thought Disorder Index (110) and the Ego
Impairment Index (111). These cognitive dysfunctions are
frequently found in family and twin studies in clinically
unaffected family members (112–121), schizotypal patients
(122–126), and clinically unaffected monozygotic twins
discordant for schizophrenia itself (127). The neural sub-
strates of many of these abnormalities are well understood
and are being rapidly explicated because these tasks are very
well suited to performance during functional brain imaging
(e.g., 128). For example, it appears that the Wisconsin Card
Sorting Test relies on dorsolateral prefrontal cortex
(128–131) and related distributed circuit structures. Work-
ing memory utilizes a complex neural substrate that includes
the prefrontal cortex and related structures. It important
when working memory is utilized to be clear about whether
the test assesses simple delayed recall (transient online stor-
age) or the more complex storage, manipulation, and recall
(executive functioning) of visuospatial or verbal memory;
these are two distinct neuropsychological processes that
probably utilize at least partially distinct neural substrates
influenced by at least partially different sets of genes (132).
Functional imaging experiments in thought disorder are
more preliminary, and the neural substrate of thought disor-
der is now being explicated.

Continuous Performance Task

The Continuous Performance Task (CPT) is another mea-
sure that has been widely applied in the study of schizo-
phrenic patients (133–136). In the basic form of this task,
the subject is presented with a string of stimuli and asked
to identify target stimuli from among background or noise
stimuli. The CPT is thought to tap into the function of
vigilance; schizophrenic patients commonly have significant
deficits in the CPT. The CPT also has the advantage that
it can be presented in a variety of ‘‘degraded’’ forms in which
the signal-to-noise ratio of the stimulus to be identified is
attenuated through a variety of parametric manipulations;
these make the vigilance and identification task more diffi-
cult to perform and may correspondingly increase group
separation between schizophrenic patients, their clinically
unaffected relatives, and appropriate comparison subjects.
The CPT is one of the most thoroughly studied tasks in
schizophrenia, in no small degree because of the pioneering
work of Nuechterlein et al. (135) and others (137,138) who
have consistently demonstrated CPT deficits in schizo-
phrenic patients. The fact that unaffected relatives of pa-
tients with schizophrenia (139–145) and schizotypal disor-
der (146–148) have parallel deficits supports the utility of
the task as a candidate endophenotype for genetic studies

of information-processing deficits in schizophrenia. These
deficits appear to measure stable markers of schizophrenia
that may be associated with a genetic vulnerability to the
illness and are seen in neuroleptic-naı̈ve, first-break, and
neuroleptic-withdrawn schizophrenic patients and their sib-
lings (142).

Span of Apprehension

The utility of Span of Apprehension as a candidate endo-
phenotype, like that of the others measures discussed in this
chapter, is supported by a vast amount of literature, only a
brief summary of which can be presented here. In its most
simplified form, Span of Apprehension refers to the number
of items that can be apprehended or attended to and subse-
quently recalled at one time from an array of stimuli. The
interested reader is referred to a particularly scholarly discus-
sion by Asarnow et al. (149). As in the other measures dis-
cussed here, the Span of Apprehension has yielded a pattern
of interesting results that makes the task another excellent
candidate endophenotype in schizophrenia. Additionally,
Span of Apprehension deficits have been found in clinically
unaffected family members of schizophrenic patients
(150–152) and in patients with schizotypal disorder (153,
154). Recently, in a study of normal twins, Bartfai et al.
(155) reported a significant genetic component in the Span
of Apprehension task, which further strengthens its utility
in genetic studies of schizophrenia.

Visual Backward Masking

In Visual Backward Masking, a simple target stimulus pre-
sented with a tachistoscope (156–158) or, more recently,
a computer (159,160) is followed by a complex, usually
powerful masking stimulus of interlocking Xs that overlap
the area of target presentation. A subject reports the target
stimulus when it is presented alone. As the masking stimulus
appears closer in time to the target (e.g., 100 milliseconds
after the target, like the interstimulus interval in PPI experi-
ments), the subject is no longer able identify the target stim-
ulus. Schizophrenic patients are subjected to the effects of
the mask on target identification at an interstimulus interval
at which normal subjects have little trouble distinguishing
the target stimulus (161). Explanations for the masking ef-
fect extend from integration of the mask with the target
stimulus to interruption of target stimulus processing by
the mask (161–164). Whatever the mechanism, the phe-
nomenon is readily identified as a marker in schizophrenic
patients (158,165–168), family members of schizophrenic
patients (159,160,169), and schizotypal patients
(170–173). The specificity of the deficit is unclear, although
in one study, manic patients at the height of psychosis
showed visual masking deficits that were reversible over time
with treatment. In this study, it was reported that the defi-
cits of schizophrenic patients with a good prognosis, who
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typically respond to treatment, may also be reversible over
time (174). The underlying neural mechanism linked to
masking deficits involves the dorsal and ventral informa-
tion-processing substrates that are supported by magnocel-
lular and parvocellular neurons (175,176). Because both
clinically unaffected family members and schizotypal pa-
tients exhibit deficits of Visual Backward Masking, it may
well serve as an important candidate endophenotype in ge-
netic studies.

P300 Event-Related Potential

Since the initial reports of Callaway and colleagues
(177–180) of P300 deficits in schizophrenia, a large num-
ber of investigators have identified their topography, lateral-
ization, and neural basis. The results of these studies make
the P300 event-related potential an excellent candidate en-
dophenotype for understanding the genetic basis of the defi-
cits.
Schizophrenic patients have long been known to have

deficits in the P300 component of the event-related poten-
tial (177,178,181). The P300 wave occurs about 300 milli-
seconds after stimulus presentation and is commonly
thought to reflect the apportionment of attention to a stim-
ulus that is relatively novel or rich in information. Many
paradigms utilize a series of rather neutral stimuli and then
use an ‘‘attention-grabbing’’ stimulus to elicit a large P300
wave. Although the variability of the latency properties of
the P300 event-related potential wave may account for part
of the diminution in schizophrenia, repeated studies report
that schizophrenic patients show a decreased P300 wave
amplitude over time (182–185). The fact that these deficits
are also found in unaffected family members of schizo-
phrenic patients (186–190) and in schizotypal patients
(191–193) supports the utilization of the P300 wave as a
candidate endophenotype. The original work of Callaway
et al. (178) and more recent studies byMcCarley and associ-
ates (182,194–196) have contributed to an understanding
of the P300 neural circuitry that supports the generation
of this wave. It appears that the P300 wave is generated from
the temporal lobes, perhaps the superior temporal gyrus of
the brain. Along with a diminution of the P300 wave in
schizophrenic patients, the volume of the superior temporal
gyrus gray matter is also diminished. Lateralization findings
indicate that it is probably the left P300 wave that is differ-
entially diminished in schizophrenic patients, matching the
volume depletion of the left superior temporal gyrus.
Older studies of reaction time and exciting new and

evolving studies of mismatch negativity (197) offer a wide
range of potentially useful endophenotypes that may prove
to be especially interesting in schizophrenia research.

SUMMARY

A multitude of interlocking studies, only some of which
have been reviewed here, point to information-processing

deficits and closely related inhibitory abnormalities as excel-
lent candidate endophenotypes for genetic studies of schizo-
phrenia. The heritability of several of these candidate endo-
phenotypes has already been assessed in genetic studies. In
addition, the neuronal mechanisms of many of the endo-
phenotypes are currently being investigated through neuro-
physiologic studies in both humans (e.g., functional imag-
ing) and related animal models. The ultimate utility of
physiologic endophenotypes may be to correlate the wealth
of emerging but nonfunctional genetic information with the
critically important and functionally significant underlying
neurobiology of these endophenotypes. The task of identify-
ing genes that convey a risk for schizophrenia is now under
way, generally with the use of either the clinical phenotype
of schizophrenia or risk-related endophenotypes. Findings
that many of the linkage sites are positive for both schizo-
phrenia and bipolar disorder (e.g., 198) will undoubtedly
stimulate a reexamination of what aspect of psychotic psy-
chopathology is being transmitted at each genetic locus, and
which nongenetic factors, such as neonatal ventral hippo-
campal lesions, interact with these genes to produce schizo-
phrenia (e.g., 68) versus bipolar disorder. Additionally,
within cohorts of schizophrenic patients, some of these in-
formation-processing endophenotypes overlap with each
other, both behaviorally and in terms of their underlying
neural substrates. This allows for the exciting possibility of
constructing ‘‘composite’’ phenotypes consisting of neuro-
logically coherent combinations of more than one of these
identified markers (102).
As the molecular mantra states, the fundamental unit of

genetic transmission is an abnormality in the structure or
expression of a protein. Presumably, most of those protein
abnormalities affect neuronal functions that can be mea-
sured as changes in physiologic functions, such as the endo-
phenotypes we have described above. The elucidation of
how different genetic abnormalities, singly or in combina-
tion, contribute to the neuronal pathophysiology of psy-
chosis may help to redefine the nosology of psychotic ill-
nesses and point the way to new treatment approaches. The
power and value of endophenotypes is that they illuminate
genetically mediated risk/vulnerability factors that often in-
teract with nongenetic factors to produce the syndrome of
schizophrenia. Thus, in the pool of genetic strategies and
techniques that can be used to understand complex genetic
psychiatric disorders (199–202), endophenotype-based
strategies play an important and informative role. In colon
cancer, the inherited genetic factor is familial polyposis
rather than cancer itself (4). In parallel, it is quite likely
that failures of information processing/inhibition are the
genetically transmitted risk factors that interact with nonge-
netic factors to produce the clinical disorder of schizophre-
nia. Thus, the identification and genetic analysis of these
endophenotypes should prove particularly valuable in un-
derstanding the genetic basis of schizophrenia. These studies
will also facilitate a fuller understanding of how genetic
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and nongenetic factors interact to produce this devastating
illness and, it is hoped, point the way to more effective
treatments.
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