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INTERACTIONS AMONG NEURONAL
SYSTEMS ASSESSED WITH

FUNCTIONAL NEUROIMAGING

CHRISTIAN BÜCHEL
AND KARL FRISTON

In the late nineteenth century, the early investigations of
brain function were dominated by the concept of functional
segregation. This approach was driven largely by the data
available to scientists of that era. Patients with circumscribed
lesions were found who were impaired in one particular
ability while their other abilities remained largely intact.
Indeed, descriptions of patients with different kinds of apha-
sia (an impairment of the ability to use or comprehend
words), made at this time, have left a permanent legacy in
the contrast between Broca’s and Wernicke’s aphasia. These
syndromes were thought to result from damage to anterior
or posterior regions of the left hemisphere, respectively. In
the first part of the twentieth century, the idea of functional
segregation fell into disrepute and the doctrine of ‘‘mass
action’’ held sway, according to which higher abilities de-
pended on the function of the brain ‘‘as a whole’’ (1). This
doctrine was always going to be unsatisfactory. However,
with the resources available at the time, it was simply not
possible to make any progress studying the function of the
‘‘brain as a whole.’’ By the end of the twentieth century,
the concept of functional segregation had returned to domi-
nation.

The doctrine is now particularly associated with cogni-
tive neuropsychology and is enshrined in the concept of
double dissociation (2). A double dissociation is demon-
strated when neurologic patients can be found with ‘‘mir-
ror’’ abnormalities. For example, many patients have been
described who have severe impairments of long-term mem-
ory but whose short-term memory is intact. In 1969, War-
rington and Shallice (3) described the first of a series of
patients who had severe impairments of phonologic short-
term memory but no impairments of long-term memory.
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This is a particularly striking example of double dissocia-
tion. It demonstrates that different brain regions are in-
volved in short- and long-term memory. Furthermore, it
shows that these regions can function in a largely indepen-
dent fashion. This observation caused major problems for
theories of memory, extant at the time, according to which
inputs to long-term memory emanated from short-term
memory systems (4).

Functional brain imaging avoids many of the problems
of lesion studies, but, here too, the field has been dominated
by the doctrine of functional segregation. Nevertheless, it
is implicit in the subtraction method that brain regions
communicate with each other. If we want to distinguish
between brain regions associated with certain central pro-
cesses, for example, then we design an experiment in which
the sensory input and motor output are the same across all
conditions. In this way, activity associated with sensory
input and motor output will cancel out. The early studies
of reading by Petersen et al. (5) and Posner et al. (6) are
still among the best examples of this approach. The design
of these studies was based on the assumption that reading
goes through a single series of discrete and independent
stages; visual shapes are analyzed to form letters, letters are
put together to form words, the visual word form is trans-
lated into sound, the sound form is translated into articula-
tion, and so on. By a comparison of suitable tasks (e.g.,
letters vs. false font, words vs. letters), each stage can be
isolated and the associated brain region identified. Although
subsequent studies have shown that this characterisation of
the brain activity associated with reading is a considerable
oversimplification, the original report still captures the es-
sence of most functional imaging studies; a number of dis-
crete cognitive stages are mapped onto discrete brain areas.
Nothing is revealed about how the cognitive processes inter-
act or how the brain regions communicate with each other.
If word recognition really did depend on the passage of
information through a single series of discrete stages, we
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would at least like to know the temporal order in which
the associated brain regions are engaged. Some evidence
comes from encephaloelectrographic and myoelectro-
graphic studies. In fact, we know that word recognition
depends on at least two parallel routes—one of meaning
and one of phonology (7). Given this model, we would like
to be able to specify the brain regions associated with each
route and have some measure of the strengths of the connec-
tions between these different regions.

In this chapter, we show how new methods for measuring
effective connectivity allow us to characterize the interac-
tions between brain regions that underlie the complex inter-
actions among different processing stages of functional ar-
chitectures.

DEFINITIONS

In the analysis of neuroimaging time series (i.e., signal
changes in a set of voxels, expressed as a function of time),
functional connectivity is defined as the temporal correlations
between spatially remote neurophysiological events (8). This
definition provides a simple characterization of functional
interactions. The alternative is effective connectivity, the
influence one neuronal system exerts over another (9). These
concepts originated in the analysis of separable spike trains
obtained from multiunit electrode recordings (10,11).
Functional connectivity is simply a statement about the ob-
served correlations; it does not comment on how these cor-
relations are mediated. For example, at the level of multiunit
microelectrode recordings, correlations can result from stim-
ulus-locked transients, evoked by a common afferent input*,
or reflect stimulus-induced oscillations, phasic coupling of
neural assemblies mediated by synaptic connections (12).
Effective connectivity is closer to the notion of a connection,
either at a synaptic (cf synaptic efficacy) or cortical level.
Although functional and effective connectivity can be in-
voked at a conceptual level in both neuroimaging and elec-
trophysiology, they differ fundamentally at a practical level.
This is because the time scales and nature of neurophysio-
logic measurements are very different (seconds vs. millisec-
onds and hemodynamic vs. spike trains). In electrophysiol-
ogy, it is often necessary to remove the confounding effects
of stimulus-locked transients (that introduce correlations
not causally mediated by direct neural interactions) to reveal
an underlying connectivity. The confounding effect of stim-
ulus-evoked transients is less problematic in neuroimaging
because propagation of signals from primary sensory areas
onward is mediated by neuronal connections (usually re-
ciprocal and interconnecting). However, it should be re-
membered that functional connectivity is not necessarily a

* That is, signal input into the neural system as a result of external stimula-
tion.

consequence of effective connectivity (e.g., common neuro-
modulatory input from ascending aminergic neurotransmit-
ter systems or thalamocortical afferents), and when it is,
effective influences may be indirect (e.g., polysynaptic relays
through multiple areas). In this chapter, we focus only on
effective connectivity. More details about functional con-
nectivity can be found in Friston et al. (8).

EFFECTIVE CONNECTIVITY

A Simple Model

Effective connectivity depends on two models: a mathe-
matical model, describing ‘‘how’’ areas are connected, and
a neuroanatomic model, describing ‘‘which’’ areas are con-
nected. We shall consider linear and nonlinear models. Per-
haps the simplest model of effective connectivity expresses
the hemodynamic change at one voxel as a weighted sum
of changes elsewhere. This can be regarded as a multiple
linear regression, in which the effective connectivity reflects
the amount of rCBF (regional cerebral blood flow) variabil-
ity, at the target region, attributable to rCBF changes at a
source region. As an example, consider the influence of
other areas M on area V1. This can be framed in a simple
equation:

V1 � M c � e [1]

where V1 is an n � 1 column vector with n scans, M is
an n� mmatrix with m regions and n observations (scans),
c is an m� 1 column vector with a parameter estimate for
each region, and e is a vector of error terms.

Implicit in this interpretation is a mediation of the influ-
ence among brain regions by neuronal connections with an
effective strength equal to the (regression) coefficient c. This
highlights the fact that the linear model assumes that the
connectivity is constant over the whole range of activation
and does not depend on input from other sources.

Experience suggests that the linear model can give fairly
robust results. One explanation is that the dimensionality
(the number of things that are going on) of the physiologic
changes can be small by experimental design. In other
words, the brain responds to simple and well-organized ex-
periments in a simple and well-organized way. Generally,
however, neurophysiologic interactions are nonlinear, and
the adequacy of linear models must be questioned (or at least
qualified). Consequently, we focus on a nonlinear model of
effective connectivity (13).

Structural Equation Modeling

The simple model above is sufficient to analyze effective
connectivity to one region at a time (e.g., V1 or V2). We
will now introduce structural equation modeling as a tool
allowing for more complicated models comprising many
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regions of interest and demonstrate how nonlinear interac-
tions are dealt with in this context. The basic idea behind
structural equation modeling differs from the usual statisti-
cal approach of modeling individual observations. In multi-
ple regression or ANCOVA (analysis of covariance) models,
the regression coefficients derive from the minimization of
the sum of squared differences of the predicted and observed
dependent variables (i.e., activity in the target region).
Structural equation modeling approaches the data from a
different perspective; instead of variables being considered
individually, the emphasis lies on the variance–covariance
structure.* Thus, models are solved in structural equation
modeling by minimizing the difference between the ob-
served variance–covariance structure and the one implied by
a structural or path model. In the past few years, structural
equation modeling has been applied to functional brain im-
aging. For example, McIntosh et al. (14) demonstrated the
dissociation between ventral and dorsal visual pathways for
object and spatial vision by using structural equation model-
ing of positron emission tomographic (PET) data in the
human. In this section, we focus on the theoretic back-
ground of structural equation modeling and demonstrate
this technique with the use of functional magnetic reso-
nance imaging (fMRI).

In terms of neuronal systems, a measure of covariance
represents the degree to which the activities of two or more
regions are related (i.e., functional connectivity). The study
of variance–covariance structures here is much simpler than
in many other fields; the interconnection of the dependent
variables (regional activity of brain areas) is anatomically
determined, and the activation of each region can be directly
measured with functional brain imaging. This represents a
major difference from ‘‘classic’’ structural equation model-
ing in the behavioral sciences, in which models are often
hypothetical and include latent variables denoting rather
abstract concepts, such as intelligence.

As mentioned above, structural equation modeling mini-
mizes the difference between the observed or measured co-
variance matrix and the one that is implied by the structure
of the model. The free parameters (path coefficients or con-
nection strengths; c above) are adjusted to minimize the
difference between the measured and modeled covariance
matrix.† (See ref. 15 for details.)

An important issue in structural equation modeling is
the determination of the participating regions and the un-
derlying anatomic model. Several approaches to this issue
can be adopted. These include categoric comparisons be-

* The variance–covariance structure describes in detail the dependencies
between the different variables (in this case, the measured regional re-
sponses to stimulation).
† The free parameters are estimated by minimizing a function of the
observed and implied covariance matrix. To date, the most widely used
objective function in structural equation modeling is the maximum likeli-
hood (ML) function.

tween different conditions, statistical images highlighting
structures of functional connectivity, and nonhuman elec-
trophysiologic and anatomic studies (16).

With respect to anatomic connectivity in humans, the
advent of new MR techniques promises a better characteri-
zation of neuronal connectivity in humans. Diffusion tensor
imaging measures the anisotropy of diffusion in the brain.
The main anisotropy exists in the white matter because the
orientation of neuronal fibres (axons) allows molecules to
diffuse more easily along the fiber than in other directions.
Therefore, the main direction of the diffusion tensor reflects
the underlying orientation of white matter tracts. Through
tracing algorithms, it is now possible to infer the connectiv-
ity of individual regions (e.g., activations derived from an
fMRI study) in an individual brain (17) (Fig. 29.1).

A model is always a simplification of reality; exhaustively
correct models either do not exist or are too complicated
to understand. In the context of effective connectivity, one
has to find a compromise between complexity, anatomic
accuracy, and interpretability. Mathematical constraints on
the model also exist; if the number of free parameters ex-
ceeds the number of observed covariances, the system is
underdetermined and no single solution exists.

Each estimated model can be analyzed to give an overall

FIGURE 29.1. Axial diffusion tensor image, obtained by using a
TurboSTEAM diffusion sensitized pulse sequence on a Siemens
Vision 1.5T MR scanner. Voxel size 3 � 3 � 3 mm. Average of 20
replications. Needles in each voxel show the largest eigenvector
of the tensor (i.e., the main orientation of diffusion within this
voxel). In white matter, the major axis of diffusion is constrained
by the orientation of white matter tracts and therefore provides
a good estimate of the direction of fiber bundles (17). As ex-
pected, the corpus callosum in the center of the image shows
predominantly horizontal fibers connecting both hemispheres. In
the occipital cortex, parts of the optic radiation with a predomi-
nantly anterior–posterior fiber orientation can be seen. The preci-
sion of the method is highlighted by the demonstration of corti-
cocortical U fibers, magnified in the small image. (From Nolte U,
Finsterbusch J, Frahm J. Rapid whole brain diffusion mapping
without susceptibility artifacts using diffusion-weighted single-
shot STEAM MRI. Proceedings of the eighth annual meeting of
the International Society of Magnetic Resonance in Medicine,
Denver, 2000:807.)
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goodness-of-fit measure for use when different models are
compared with each other. A ‘‘nested model’’ approach can
be used to compare different models (e.g., data from differ-
ent groups or conditions) in the context of structural equa-
tion modeling. A so-called null model is constructed in
which the estimates of the free parameters are constrained
to be the same for both groups. The alternative model allows
free parameters to differ between groups. The significance
of the differences between the models is expressed by the
difference of the goodness-of-fit statistic. Consider the fol-
lowing hypothetical example. Subjects are scanned under
two different conditions (e.g., attention and no attention).
The hypothesis might be that within a system of regions A,
B, C, and D, the connectivity between A and B is different
under the two attentional conditions. To determine
whether the difference in connectivity is statistically signifi-
cant, we estimate the goodness-of-fit measure for two
models. Model 1 allows the connectivity between A and B
to take different values for both conditions. Model 2 con-
strains the path coefficient between A and B to be equal for
attention and no attention. If the change of connectivity
between attention and no attention for the connection of A
and B is negligible, the constrained model (model 2) should
fit the data as well as the free model (model 1). We can
now infer whether the difference of the two goodness-of-
fit measures is significant. Nonlinear models can also be
accommodated in the framework of structural equation
modeling by introducing additional variables containing a
nonlinear function (e.g., f (x) � x2) of the original variables
(18). Interactions of variables can be incorporated in a simi-
lar fashion, wherein a new variable, containing the product
of the two interacting variables, is introduced as an addi-
tional influence. We will now demonstrate these ideas with
an example. More details of structural equation modeling,
including the operational equations, can be found in ref.
15.

Example: Learning

In the first example, we were interested in changes in effec-
tive connectivity over time as expected during paired-associ-
ates learning (19). In the case of object-location memory,
several functional studies have demonstrated activation of
ventral occipital and temporal regions during the retrieval
of object identity and, conversely, increased responses in
dorsal parietal areas during the retrieval of spatial location
(20). These results suggest domain-specific representations
in posterior neocortical structures that are closely related to
those involved in perception, a finding that accords with
the segregation of ventral and dorsal pathways in processing
categoric or spatial stimulus features, respectively. Another
phenomenon observed in some learning studies is a decrease
of neural responses (i.e., adaptation) to repeated stimulus
presentations. This repetition suppression has been repli-
cated consistently in primate electrophysiologic and human

functional imaging studies (21). For object-location learn-
ing, it is intuitively likely that two specialized systems need
to interact to establish an association. Domain-specific rep-
resentations or repetition suppression is not sufficient to
account for this associative component. In other words,
functional segregation and localized response properties
cannot account for associative learning alone.

In our fMRI experiment, decreases in activation during
learning, indicative of repetition suppression, were observed
in several cortical regions in the ventral and dorsal visual
pathway. Within the framework of repetition suppression,
it has been hypothesized that decreases in neural responses
are a secondary result of enhanced response selectivity (22).
By analogy to the development and plasticity of cortical
architectures, this refined selectivity is likely to be a conse-
quence of changes in effective connectivity within the sys-
tem at a synaptic level. We explicitly addressed this notion
by characterising time-dependent changes in effective con-
nectivity during learning.

The experiment was performed on a 2-tesla (T) MRI
system equipped with a head volume coil. fMRI images
were obtained every 4.1 seconds with echo-planar imaging
(48 slices in each volume). Six subjects had to learn and
recall the association between 10 simple line drawings of
real-world objects and 10 locations on a screen during
fMRI. Each learning trial consisted of four conditions: en-
coding, control, retrieval, and control (Fig. 29.2A). The be-
havioral data acquired during retrieval demonstrated that
all six subjects were able to learn the association between
object identity and spatial location, for all 10 objects, within
eight learning blocks, as indicated by the ensuing asymptotic
learning curves (Fig. 29.2B).

The structural model used in the analysis embodies con-
nections within and across ventral and dorsal visual path-
ways and was based on anatomic studies in primates (Fig.
29.2C). Primary visual cortex was modeled as the origin of
both pathways. In addition to ‘‘interstream’’ connections
between dorsal extrastriate cortex and the fusiform region
and between the posterior parietal cortex and the posterior
inferotemporal cortex, we included direct connections based
on a hierarchic cortical organization. Given our hypothesis
relating to changes in effective connectivity between dorsal
and ventral pathways, the path analysis focused on the con-
nection between posterior parietal cortex (PP, dorsal stream)
and posterior inferotemporal cortex (ITp, ventral stream).
We divided each learning session into EARLY (first part)
and LATE (second part) observations and estimated sepa-
rate path coefficients for each partition.

The path coefficient between PP and ITp increased sig-
nificantly during learning in the group (p � .05) and was
confirmed by an analysis of individual subjects showing an
increase in effective connectivity between PP and ITp of
0.27. In contrast to the connections between streams, con-
nections within the dorsal pathway decreased over time.

The estimated change in connectivity from PP to ITp
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FIGURE 29.2. Changes in effective connectivity over time in paired-associates learning. A: Design
of the study. Blocks of encoding and retrieval were alternated with control conditions. Subjects
had to complete three individual learning sessions to avoid the confounding effect of time. B:
Behavioral performance data for each of the six subjects averaged across all three learning sessions.
C:Anatomicmodel. Processing of object identity is mainly a property of the ventral visual pathway,
whereas object location is a property of the dorsal stream. We focused on the interstream connec-
tions (mainly posterior parietal cortex to posterior inferotemporal cortex) based on the hypothesis
that learning the association of object identity and spatial location leads to an increase in effective
connectivity between the ventral and dorsal streams. (From Büchel C, Coull JT, Friston KJ. The
predictive value of changes in effective connectivity for human learning. Science 1999;283:
1538–1541, with permission.)

clearly depended on the cutoff point between EARLY and
LATE. To establish unequivocally a relationship between
neurophysiologically mediated changes in connectivity and
behavioral learning, we examined the relationship between
the temporal pattern of effective connectivity changes and
learning speed for all sessions and subjects. We estimated
the differences in effective connectivity for seven EARLY
and LATE partitions by successively shifting the cutoff. The
cutoff time at which the connectivity change peaked was
used as a temporal index of changes in effective connectivity
(i.e., plasticity). The significant regression of k, a measure
of learning speed*, on this plasticity index indicated that
for sessions showing fast learning (i.e., high value of k), the
maximum difference in path coefficients between PP and

* All individual behavioral learning curves were well approximated by the
function 1�e�kx, where 0 � k�. 1 indexes learning speed. Small values
of k indicate slower learning.

ITp was achieved earlier in the session (i.e., EARLY com-
prises fewer scans relative to LATE) (Fig. 29.3). In other
words, the temporal pattern of changes in effective connec-
tivity strongly predicted learning or acquisition.

Example: Attention

Electrophysiologic and neuroimaging studies have shown
that attention to visual motion can increase the responsive-
ness of the motion-selective cortical area (V5) (23,24) and
the PP (25). Increased or decreased activation in a cortical
area is often attributed to attentional modulation of the
cortical projections to that area. This leads to the notion
that attention is associated with changes in connectivity.

Here we present fMRI data from an individual subject,
scanned under identical visual motion stimulus conditions
while only the attentional component of the tasks employed
was changed. First, we identify regions that show differential
activations in relation to attentional set. In the second stage,
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FIGURE 29.3. Changes in effective connectivity predict learning.
This graph shows the correlation between the temporal index of
changes in effective connectivity and learning. The temporal
index is defined as the time of a maximum increase in effective
connectivity between posterior parietal cortex and posterior in-
ferotemporal cortex. For example, a temporal index of 3 indicates
that the maximum increase in effective connectivity occurred be-
tween the third and fourth blocks. The numbers denote the sub-
ject from which this temporal index of effective connectivity was
obtained. Each subject was scanned during three independent
learning sessions; therefore, each number appears three times.
A negative slope means that the maximum increase in effective
connectivity occurs earlier in fast learning. (From Büchel C, Coull
JT, Friston KJ. The predictive value of changes in effective connec-
tivity for human learning. Science 1999;283:1538–1541, with per-
mission.)

changes in effective connectivity to these areas are assessed
with structural equation modeling. Finally, we show how
these attention-dependent changes in effective connectivity
can be explained by the modulatory influence of parietal
areas by using a nonlinear extension of structural equation
modeling. The specific hypothesis we addressed was that
parietal cortex could modulate the inputs from V1 to V5.

The experiment was performed on a 2-T MRI system
equipped with a head volume coil. fMRI images were ob-
tained every 3.2 seconds with echo-planar imaging (32 slices
in each volume). The subject was scanned during four dif-
ferent conditions: fixation, attention, no attention, and sta-
tionary. Each condition lasted 32 seconds to give 10 volumes
per condition. We acquired a total of 360 images. During
all conditions, the subjects looked at a fixation point in the
middle of a screen. In this section, we are interested only
in the two conditions with visual motion (attention and no
attention), in which 250 small white dots moved radially
from the fixation point, in random directions, toward the
border of the screen at a constant speed of 4.7 degrees per
second. The difference between attention and no attention
lay in the explicit command given to the subject shortly
before the condition: just look indicated no attention, and
detect changes indicated the attention condition. Both visual
motion conditions were interleaved with fixation. No re-
sponse was required.

Regions of interest were defined by categoric compari-
sons with use of an output statistical image (SPM�Z�) com-

paring attention with no attention and comparing no atten-
tion with fixation. As predicted, given a stimulus consisting
of radially moving dots, we found activation of the lateral
geniculate nucleus, primary visual cortex (V1), motion-sen-
sitive area (V5), and posterior parietal complex. For the
subsequent analysis of effective connectivity, we defined re-
gions of interest with a diameter of 8 mm centered around
the most significant voxel as revealed by the categoric com-
parison. A single time series, representative of this region,
was defined by the first eigenvector of all the voxels in the
region of interest (15).

Our model of the dorsal visual stream included the lateral
geniculate nucleus, V1, V5, and the PP. Although connec-
tions between regions are generally reciprocal, for simplicity
we modeled only unidirectional paths.

To assess effective connectivity in a condition-specific
fashion, we used time series that comprised observations
during the condition in question. Path coefficients for both
conditions (attention and no attention) were estimated by
using a maximum likelihood function. To test for the im-
pact of changes in effective connectivity between attention
and no attention, we defined a free model (allowing different
path coefficients between V1 and V5 for attention and no
attention) and a constrained model (constraining the V1N
V5 coefficients to be equal). Figure 29.4 shows the free-
model and estimated path coefficients. The connectivity be-
tween V1 and V5 increases significantly during attention.
Note also a significant difference in connectivity between
V5 and the PP.

The linear path model comparing attention and no atten-

FIGURE 29.4. Structural equation model of the dorsal visual
pathway, comparing attention and no attention. Connectivity be-
tween right primary visual cortex (V1) and motion-sensitive area
(V5) is increased during attention relative to no attention. This
is also shown for the connection between V5 and the posterior
parietal cortex. (From Büchel C, Friston KJ. Effective connectivity
in functional brain imaging. Neural Networks 2000;13:871–882,
with permission.)
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FIGURE 29.5. Structural equation model of the dorsal visual
pathway incorporating the interaction effect of right posterior
parietal cortex on the connection from right primary visual cortex
(V1) to motion-sensitive area (V5). (From Büchel C, Friston KJ.
Effective connectivity in functional brain imaging. Neural Net-
works 2000;13:871–882, with permission.)

tion revealed increased effective connectivity in the dorsal
visual pathway in relation to attention. The question that
arises is, which part of the brain is capable of modulating
this pathway? Based on lesion studies (26) and the system
for directed attention described in ref. 27, the PP is hypothe-
sized to play such a modulatory role.

We extended our model accordingly to allow for nonlin-
ear interactions, testing the hypothesis that the PP acts as
a moderator of the connectivity between V1 andV5. Assum-
ing a nonlinear modulation of this connection, we con-
structed a new variable, V1PP, in our analysis. This variable,
mediating the interaction, is simply the time series from
regionV1multiplied (element by element) by the time series
of the right posterior parietal region.

The influence of this new variable on V5 corresponds to
the influence of the PP cortex on the connection between
V1 and V5 (i.e., the influence of V1 on V5 is greater when
activity in the PP is high). The model is shown in Fig. 29.5.
Because our nonlinear model could accommodate changes
in connectivity between attention and no attention, the entire
time series was analyzed (i.e., attention-specific changes are
now explicitly modeled by the interaction term).

As in the linear model, we tested for the significance of
the interaction effect by comparing a restricted and a free
model. In the restricted model, the interaction term (i.e.,
path from V1PP to V5) was set to zero. Omitting the inter-
action term led to a significantly reduced model fit (p �
.01), which indicated the predictive value of the interaction
term.

The presence of an interaction effect of the PP on the
connection between V1 and V5 can also be illustrated by
a simple regression analysis. If the PP shows a positive mod-
ulatory influence on the path between V1 and V5, the influ-

ence of V1 on V5 should depend on the activity of the PP.
This can be tested by splitting the observations into two
sets, one containing observations in which the PP activity
is high and another one in which the PP activity is low. It
is now possible to perform separate regressions of V5 on
V1 by using both sets. If the hypothesis of positive modula-
tion is true, the slope of the regression of V5 on V1 should
be steeper under high values of PP.

Variable Parameter Regression

As demonstrated in the previous sections, the basic linear
model can be seen as a linear regression. The regression
coefficient is then interpreted as a measure of the connectiv-
ity between areas. This interpretation of course implies that
the influence is mediated by neural connections with an
effective strength equal to the regression coefficient. Using
this approach, one immediately makes the assumption that
the effective connectivity does not change over observations
because only a single regression coefficient for the whole
time series is estimated. This is unsuitable for the assessment
of effective connectivity in functional imaging because the
goal in some experiments is to demonstrate changes in effec-
tive connectivity—for instance, as a function of different
conditions (e.g., attention and no attention) or simply time
itself. In the framework of regression analysis, there are three
ways around this problem. Firstly, one can split the data in
different groups according to the experimental condition
(e.g., attention and no attention) and then test for the differ-
ence of the regression coefficients. However, we may not
know a priori the time course of the changes that allow us
to split the data in this way. A second, more general solution
is to expand the explanatory variable in terms of a set of
basis functions to account for changes in connectivity. Here,
we present another alternative, variable parameter regres-
sion, that allows one to characterize the variation of the
regression coefficient by using the framework of state–space
models and the Kalman filter (28,29).

Mathematical Background

Consider the classic regression model

y � x� � u [2]

where y is the measured data vector, x is a vector of explana-
tory variables, and � is the unknown parameter. Usually,
� is estimated as

�̂ � pinv(x)y [3]

However, � can also be estimated recursively with the
advantage that inversion of a smaller matrix is necessary.
This approach is known as recursive least squares (30). This
basic model is now extended to allow � to evolve over time.
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Variable parameter regression assumes T-ordered scalar ob-
servations (y1, . . . yT) generated by the following model:

yt � xt�t � ut, t � 1, . . . , T, [4]

ut � N(0, �2) [5]

where xt is an n-dimensional row vector of known regressors
and �t is an n-dimensional column vector of unknown coef-
ficients that corresponds to estimates of effective connectiv-
ity. ut is drawn from a gaussian distribution. All observations
are expressed as deviations from the mean.

A recursive algorithm known as the Kalman filter (29)
can now be applied to estimate the state variable (�) at
each point in time and also allows one to estimate the log-
likelihood function of the model. A numeric optimization
algorithm is then employed to maximize the likelihood
function with respect to P. As the Kalman filter is a recursive
procedure, the estimation of �t is based on all observations
up to time t. Therefore, the filtered estimates will be more
accurate toward the end of the sample. This fact is corrected
for with the Kalman smoothing algorithm, which is used
post hoc and runs backward in time, taking account of the
information made available after time t. Details of the Kal-
man filter and smoothing recursions can be found in stan-
dard textbooks of time series analysis and econometrics
(31,32).

Example: Attention to Visual Motion

To illustrate variable parameter regression, we use the single-
subject data set from the study of attention to visual motion.
We concentrate on the effect of attention on the connection
between the motion-sensitive area (V5) and the PP in the
right hemisphere. Using structural equation modeling, we
demonstrated that it is principally this connection, in the
dorsal visual stream, that is modulated by attention (15).
In the current analysis, we are interested in whether variable
parameter regression is capable of reproducing these find-
ings. We therefore have assessed the effective connectivity
�t by regressing PP on V5. An alternate direction search,
numeric optimization, gave a �2 statistic of 56.4. We there-
fore had to reject the null hypothesis of no variation at the
5% level. P was estimated to be 0.074 and �2 was 0.23.
The ordinary regression coefficient � for the model y �
x� � u was estimated at 0.73. Figure 29.6 A,B shows the
trajectories of the smoothed and filtered estimates ��t(T)
together with the associated standard errors. It is clearly
evident that ��t is higher during the attention conditions
than during the no attention conditions. Figure 29.6D re-
lates our technique to an ordinary regression. In this analy-
sis, we constrained the variance term P to zero and reestim-
ated ��t. The trajectory of ��t now converges to �, the
ordinary regression coefficient of the model y � x� � u.
As expected, the smoothed estimates are simply a constant
(i.e., � � 0.73).

We interpret ��t as an index of effective connectivity
between area V5 and the PP. In our example, the connection
betweenV5 and the PP resembles the site of attention modu-
lation. This leads to an interesting extension, in which one
might hypothesize that a third region is responsible for the
observed variation in effective connectivity indicated by the
trajectory of ��t(T). In other words, after specifying the site
and nature of attentional modulation, we now want to know
the location of the source.We addressed this by using ��t(T)
as an explanatory variable in an ordinary regression analysis
to identify voxels that covaried with this measure of effective
connectivity. Figure 29.6C shows the result of this analysis.
Among areas with statistically significant (p � .001, uncor-
rected) positive covariation were the dorsolateral prefrontal
cortex and the anterior cingulate cortex. This result con-
firms the putative modulatory role of the dorsolateral pre-
frontal cortex in attention to visual motion, as suggested by
previous analyses (15).

Effective Connectivity versus Categorical
Comparisons

One obvious advantage of the assessment of effective con-
nectivity is that it allows one to test hypotheses about the
integration of cortical areas. For example, in the presence
of modulation, the categoric comparison between attention
and no attentionmight reveal prestriate, parietal, and frontal
activations. However, the only statement possible is that
these areas show higher cortical activity during the attention
condition as opposed to the no attention condition. The
analysis of effective connectivity revealed two additional re-
sults. Firstly, attention affects the pathway from V1 to V5
and from V5 to PP. Secondly, the introduction of nonlinear
interaction terms allowed us to test a hypothesis about how
these modulations are mediated. The latter analysis sug-
gested that the PP exerts a modulatory influence on area
V5.

The measurements used in all examples in this chapter
were hemodynamic in nature. This limits an interpretation
at the level of neuronal interactions. However, the analogy
between the form of the nonlinear interactions described
above and voltage-dependent (i.e., modulatory) connections
is a strong one. It is possible that the modulatory impact of
PP on V5 is mediated by predominantly voltage-dependent
connections. We know of no direct electrophysiologic evi-
dence to suggest that extrinsic backward PP to V5 connec-
tions are voltage-dependent; however, our results are consis-
tent with this. An alternative explanation for modulatory
effects, which does not necessarily involve voltage-depen-
dent connections, can be found in the work of Aertsen and
Preissl (10). These authors show that effective connectivity
varies strongly with, or is modulated by, background neu-
ronal activity. The mechanism relates to the efficacy of sub-
threshold excitatory postsynaptic potentials in establishing
dynamic interactions. This efficacy is a function of post-
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FIGURE 29.6. A,B: The trajectory of the smoothed and filtered estimates ��t(T) together with the
associated standard errors for the variable parameter estimation of effective connectivity between
motion-sensitive area (V5) and posterior parietal cortex (PP). It is evident that ��t (the dynamic
regression coefficient) is higher during the attention conditions than during the no attention
conditions. C: Areas that significantly covaried with the time-dependent measure of effective
connectivity between V5 and the PP [i.e., ��t(T)]. The output statistical image SPM�Z� thresholded
at p � .001 (uncorrected) overlaid on coronal and axial slices of the subject’s structural MRI. The
maximum under the cross-hairs was at 45, 21, 39 mm, Z � 4. D: The relationship between our
technique and an ordinary regression analysis. In this analysis, the variance term P was set to zero
(i.e., fixed regression model). The trajectory of ��t now converges to � (� 0.73), the regression
coefficient of the model y � x� � u. (From Büchel C, Friston KJ. Dynamic changes in effective
connectivity characterized by variable parameter regression and Kalman filtering.HumBrainMap-
ping 1998;6:403–408, with permission.)

synaptic depolarization, which in turn depends on the tonic
background of activity.

CONCLUSIONS

This chapter has reviewed the basic concepts of effective
connectivity in neuroimaging. We have introduced several
methods to assess effective connectivity—multiple linear
regression, covariance structural equation modeling, and
variable parameter regression. In the first example, structural
equation modeling was introduced as a device that allows
one to combine observed changes in cortical activity and
anatomic models. An application of this technique revealed
changes in effective connectivity between the dorsal and
the ventral stream over time in a paired-associates learning
paradigm. The temporal pattern of these changes was highly
correlated with individual learning performance, and there-
fore changes in effective connectivity predicted learning
speed. The second example of structural equation modeling
focused on backward modulatory influences of high-order

areas on connections among lower-order areas. Both exam-
ples concentrated on changes in effective connectivity and
allowed us to characterize the interacting areas of the net-
work at a functional level. Variable parameter regression
was then introduced as a flexible regression technique that
allows the regression coefficient to vary smoothly over time.
Again, we confirmed the backward modulatory effect of
higher cortical areas on those areas situated lower in the
cortical hierarchy. Although this field is less than mature,
the approach to neuroimaging data and regional interac-
tions discussed above is an exciting endeavor that is starting
to attract more and more attention.

REFERENCES

1. Lashley KS. Brain mechanisms and intelligence. Chicago: Univer-
sity of Chicago Press, 1929.

2. Shallice T. From neuropsychology to mental structure. Cambridge:
Cambridge University Press, 1988.

3. Warrington EK, Shallice T. The selective impairment of auditory
short-term memory. Brain 1969;92:885–896.

4. Atkinson RC, Shiffrin RM. Human memory: a proposed system



Neuropsychopharmacology: The Fifth Generation of Progress392

and its control processes. In: Spence KW, Spence JT, eds. The
psychology of learning and motivation: advances in research and
theory (vol 2). New York: Academic Press, 1968.

5. Petersen SE, Fox PT, Snyder AZ, et al. Activation of extrastriate
and frontal cortical areas by words and word-like stimuli. Science
1990;249:1041–1044.

6. Posner MI, Petersen SE, Fox PT, et al. Localization of cognitive
operations in the human brain. Science 1988;240:1627–1631.

7. Marshall JC, Newcombe F. Patterns of paralexia: a neurolinguis-
tic approach. J Psycholinguist Res 1973;2:175–199.

8. Friston KJ, Frith CD, Liddle PF, et al. Functional connectivity:
the principal component analysis of large (PET) data sets. J Cereb
Blood Flow Metab 1993;13:5–14.

9. Friston KJ, Frith CD, Frackowiak RSJ. Time-dependent changes
in effective connectivity measured with PET. Hum Brain Map-
ping 1993;1:69–80.

10. Aertsen A, Preissl H. Dynamics of activity and connectivity in
physiological neuronal networks. New York: VCH Publishers,
1991.

11. Gerstein GL, Perkel DH. Simultaneously recorded trains of ac-
tion potentials: analysis and functional interpretation. Science
1969;164:828–830.

12. Gerstein GL, Bedenbaugh P, Aertsen A. Neuronal assemblies.
IEEE Trans Biomed Eng 1989;36:4–14.

13. Friston KJ, Ungerleider LG, Jezzard P, et al. Characterizing mod-
ulatory interactions between V1 and V2 in human cortex with
fMRI. Hum Brain Mapping 1995;2:211–224.

14. McIntosh AR, Grady CL, Ungerleider LG, et al. Network analy-
sis of cortical visual pathways mapped with PET. J Neurosci 1994;
14:655–666.
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