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AUTOMATED 3D ANALYSIS OF LARGE
BRAIN MRI DATABASES

ALAN C. EVANS

In recent years, the study of gross neuroanatomy and its
relationship to behavior and brain function has been reener-
gized by the advent of imaging techniques and the powerful
computational tools with which to analyze high-resolution
three-dimensional (3D) brain images (10,11,22,52,53).
However, such high technology tools often demand that
scientific questions be restated and made more amenable to
quantitative analysis. Questions such as ‘‘How much nor-
mal variation is there in the size, shape, or location of an
individual brain structure?’’ or ‘‘To what extent does func-
tional architecture of the cortex depend on the anatomic
boundaries between anatomic regions?’’ carry with them the
assumption that the borders of individual structures can be
specified accurately in any brain. In the past, basic questions
of functional neuroanatomy were difficult to address in a
systematic way in the living brain. We have learned much
from anecdotal reporting of individual patients with various
forms of brain lesion or from direct cortical stimulation
during brain surgery, but the generalization of individual
observation to the wider population has been confounded
by the normal variation in brain structure itself. There is
then a fundamental interest in understanding the nature of
anatomic variability in the population, both for its relation-
ship to functional variability and for the potential of using
structural abnormality as a measure of development, normal
aging, and disease. For instance, in some degenerative dis-
eases like Huntington’s disease and Alzheimer’s disease, the
sulci becomemore open and the ventricles become enlarged.
Magnetic resonance imaging (MRI)-based measurements of
these changes can lead to early diagnosis and treatment, but
we need to understand the variation among normal brains
first.

Although the study of postmortem neuroanatomy is a
long-established science, the ability to accumulate the num-
bers of brains necessary to make statistically meaningful con-
clusions about cerebral anatomy is a relatively recent phe-

Alan C. Evans: Department of Neurology, McGill University, Montreal
Neurological Institute, Montreal, Quebec, Canada.

nomenon. It is still difficult to identify reliably in any single
brain the anatomic landmarks, boundaries, and other delim-
iting features necessary for any subsequent analysis. Thus,
we face a new problem posed by this newfound technology
and its inflexible demand that anatomic questions be posed
in numerical rather than descriptive terms. The tools exist
to image large numbers of brains noninvasively with MRI,
but we are still struggling with how to extract the anatomic
measurements necessary to answer the questions posed
above. It is relatively easy to identify the precentral gyrus,
but few researchers attempt to define its ‘‘top’’ and ‘‘bot-
tom.’’ Where does the inferior frontal sulcus end? Tradi-
tional brain atlases identify brain regions only by pointing
to the middle of the region or surface feature, leaving the
interfaces between regions unspecified. Neuroanatomists
debate the exact boundary of even relatively simple struc-
tures such as the thalamus or caudate nucleus. With this
context, new initiatives at various laboratories are attempt-
ing to standardize and codify the partitioning of the human
brain into named regions, not without controversy. Tradi-
tional neuroanatomists debate among themselves about
what parcellation scheme and nomenclature to use. Com-
puter scientists argue among themselves about whether to
use hierarchical, relational, object-oriented, or some other
form of database structure to organize the brain parcellation.
Both groups tend to misunderstand the importance of the
other’s concerns. Neurobiologists or physicians are not used
to thinking in terms of inclusive sets where, for instance,
every structure at one level is wholly included within a
higher level organization, where all 3D pixels, i.e., voxels,
within the brain space must be labeled as one of the struc-
tures in the partitioning scheme, or that the cerebrospinal
fluid (CSF) ventricular spaces may be declared as being out-
side of ‘‘brain.’’ Computer scientists tend to ignore the reali-
ties that many cortical sulcal features do not exist in every
brain, and may be fragmented or have multiple occurrences.
Some sophisticated analytic approaches for quantifying ana-
tomic variability assume that a particular landmark can be
perfectly identified in any brain when the reality is that
errors of 5 to 10 mm typically occur, an error that is about
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the same magnitude as the true spatial variation being
sought.

Despite heroic efforts in the recent past (2,29,58,60,62,
75,79,80), manual labeling of many individual MRI data
sets in 3D is a labor-intensive effort that is not likely to be
widely adopted. Fully automated techniques that produce
accurate neuroanatomic segmentation in large numbers of
MRI data sets are essential if questions of normal cross-
sectional variability, normal longitudinal development, and
detection of abnormality in single subjects or in groups are
to be answered definitively. Many groups are now engaged
in the field of MRI-based quantitative neuroanatomy, and
an exhaustive review of the field is beyond the scope of
this chapter. A representative sampling of activity by other
groups in the field, categorized into the four forms of seg-
mentation discussed in the subsequent Methods section,
include the following:

� Tissue classification/voxel morphometry: This refers to
MRI intensity-based classification of images into tissue
classes and voxel-based statistical analysis of the resulting
class maps. In normal brain, the tissue classes are typically
gray matter, white matter, and CSF, although there is
no reason in principle to restrict to these three tissue
types. In these approaches, one or more co-registered
MRI images of the same neuroanatomy, obtained using
different acquisition protocols [e.g., T1-weighted, T2-
weighted, proton density (PD), magnetization transfer),
provide the input data. At each voxel the MRI intensity
for each of theN input images provides anN-dimensional
‘‘feature vector.’’ Ideally, each tissue class is identified by
a unique feature vector. In practice, many confounding
factors (e.g., tissue heterogeneity, MRI field distortions,
partial volume effects, and image noise) blur the feature
space and render it difficult to distinguish accurately even
three tissue classes. Many different multivariate statistical
methods exist to optimize the class labeling and, for most
of them, more independent images (features) help to di-
sentangle overlapping class distributions in feature space.

Mapping the segmented images into stereotaxic space
(69,70) allows for group analysis across a population of
3D data sets from different individuals. All of the ma-
chinery of random field statistical analysis developed for
functional imaging then becomes available for structural
analysis (1,5,30,31,35,54,56,57,81–83).

� Regional parcellation/atlas deformation: Delineation of
brain regions within each tissue class (e.g., caudate nu-
cleus in the gray matter class) is not possible using only
the information available in the MR image(s) since there
is not sufficient differentiation among these regions
within the feature space. Some form of prior information
on neuroanatomic boundaries is needed, usually in the
form of a computerized brain atlas, to assist in 3D brain
regional labeling. Regions can be identified by vector
boundaries or by labeling of all internal voxels. The atlas

or parcellation scheme can be used as a guide to manual
segmentation or as the basis for automated regional seg-
mentation in which the atlas space is deformed to match
each new 3D brain image. The atlas template is matched
to the newMRI volume through a variety of nonlinear de-
formation techniques, the most successful of which use
image similarity criteria to deformone image into another.

Once delineated in their native space it is possible to
map the regional labels into stereotaxic space in much the
same way as tissue class maps and to conduct voxel mor-
phometry among groups using the random field statistical
analysis (3,4,6,12,18,18,21,26,32,34,36,39–41,50,68).

� Surface extraction/cortical unfolding: Regional parcella-
tion is generally quite successful at labeling relatively well-
defined 3D brain regions, such as the thalamus, but is
typically less successful in identifying cortical gyri. In-
deed, the cortex as such is sufficiently important to merit
special analytic treatment. Techniques have been devel-
oped to ‘‘extract’’ the exterior cortical surface automati-
cally by boundary detection of the intensity interface be-
tween gray matter and subarachnoid CSF. To overcome
partial effects, some groups have targeted the internal
cortical margin at the interface between gray and white
matter. Obtaining a measure of the two surfaces simul-
taneously allows for a measure of cortical thickness at
each location over the cortical surface.

Extraction of the cortical surface has prompted some
groups to explore the potential of an ‘‘unfolded’’ cortical
surface as a means of studying functional neuroanatomy
on a two-dimensional (2D) plane. Arguably, this device
reduces the variability of functional areas introduced by
cortical folding in three dimensions. The mapping from
3D to 2D is a nontrivial task with many issues surround-
ing the optimal mapping function, with direct analogies
to the well-known cartographic dilemmas of preservation
of area, direction, distance etc. (7,8,20,27,28,38,49,55,
77,78).

� Sulcal extraction/analysis: The cortical sulci have held a
historical position of prominence in functional neuro-
anatomy, in part because of their utility as approximate
landmarks to functional areas. Recent interest has cen-
tered upon extracting not just the surface trace of the
sulcus as a line but rather the depth of the sulcus as a
ribbon. The latter approach provides more information
on buried cortex and sulcal shape than a simple line trace,
which can be related to genetic and developmental con-
siderations (46,51,59,65,76).

In the United States, the Human Brain Project has spe-
cifically set out to foster the application of computational
techniques, hardware, and algorithms to neuroscience at all
spatial scales. We are involved in one of these applications
operating at the gross morphology level. The International
Consortium for Brain Mapping (ICBM) (52), seeks to cre-
ate a so-called probabilistic human brain atlas (see below).
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This chapter provides an overview of the methods developed
by the Brain Imaging Centre (BIC) at the Montreal Neuro-
logical Institute for fully automated 3D segmentation of the
ICBM database and other MRI databases like it, such as
those collected for the creation of normal pediatric develop-
ment and for evaluation of new pharmaceuticals. A key
concept underlying this work is that of the analysis ‘‘pipe-
line,’’ which takes 3D MRI volumes from large numbers
of subjects and generates 3D statistical maps of adult brain
morphology with no manual intervention. The pipeline
concept has also been implemented for clinical trial analysis
of MRI data from multiple sites. All data sets, across pa-
tients, time points, and pulse sequences, are mapped into
a standardized 3D coordinate space for automatic segmenta-
tion and statistical analysis.

Once the MRI image has been segmented, each voxel in
the 3D image space carries an anatomic label and a measure
of the confidence in that label. This information can be
used in a variety of ways to detect subtle neuroanatomic or
neuropathologic changes:

� Single subject vs. group data for detection subtle of struc-
tural abnormality (e.g., misshapen corpus callosum)

� Intergroup cross-sectional comparison (e.g., Alzheimer’s
disease group vs. normal age-matched controls)

� Longitudinal study in a single subject (e.g., tumor
growth, progressive atrophy)

� Longitudinal study in a group [e.g., early development
and aging in normal populations, multiple sclerosis (MS)
disease progression].

Illustrative example applications of some of these capabil-
ities are described at the end of the chapter.

IMAGE SEGMENTATION METHODS

Within the BIC image analysis pipeline, MRI data are pro-
cessed using a series of tools that provide measurements of
volume, shape, size, and tissue composition of selected brain
regions. These are summarized below. To manage the flow
of MRI data through the pipeline, we have developed PCS
(Production Control System), which allows the rapid imple-
mentation and parallel execution of analysis pipelines for
processing large MRI databases. Each processing stage in
the pipeline is performed by a single command. PCS allows
the user to specify this command with its options, input
and output files, and dependencies on other stages in the
pipeline using a simple script language. Efficient coarse-
grain parallelism is achieved by distributing the individual
jobs over a network of workstations. PCS monitors the sta-
tus of each job and submits a new job when the prerequisites
for submission have been satisfied (typically the completion

FIGURE 24.1. Brain Imaging Centre (BIC) pipeline environment
for magnetic resonance imaging (MRI) processing: major compo-
nents of pipeline analysis of large ensembles of MRI multispectral
data sets. Eachmultispectral data set yields labeledmaps of tissue
type, three-dimensional (3D) brain region, and cortical topology.

of all stages on whose output data the stage depends). The
major elements of this environment include (Fig. 24.1):

� Thin-slice MRI data acquisition (typically 1-mm axial
sampling, with 1-mm isotropic voxels).

� Multimodal, multidimensional stereotaxic data format
(MINC).

� MRI simulator for validation of segmentation algorithms
(MRISIM).

� Correction for coil-dependent 3D intensity nonuniform-
ities (N3).

� Within-subject registration of different sequence volumes
(MINCTRACC).

� Cross-subject mapping into a standardized ‘‘stereotaxic’’
3D coordinate space (MRITOTAL).

� Fully automated 3D classification of gray/white/CSF tis-
sue classes (INSECT).

� Fully automated 3D regional segmentation based on
prior atlas templates (ANIMAL).

� Fully automated 3D extraction of gray/CSF and gray/
white cortical interfaces (MSD, ASP).

� Computer-assisted 3D labeling of individual sulci
(SEAL).

Stereotaxic Image Format—MINC

A fundamental aspect of this pipeline environment and its
interaction with other sites within ICBM is the MINC
image format for intersite data communication. MINC
(Medical Image Net CDF), developed at the MNI by Peter
Neelin, is a multidimensional, multimodality image file for-
mat that supports stereotaxic coordinate representation.
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Image volumes can be explored in real time in 3D with
continuous update of stereotaxic coordinates. Image files
with different native voxel dimensions can be compared
directly without regard for the original acquisition sampling
grid. This simplifies stereotaxic analysis of MRI data ensem-
bles collected with different voxel dimensions.

MRI Simulation—MRISIM

To assist in the evaluation of these segmentation tools, we
created an average MRI data set of a single young normal
male, by repeated MRI scanning followed by linear align-
ment of all volumes. A total of 27 separate MRI scans were
collected. The improved signal-to-noise ratio (SNR) in the
composite MRI, termed ICBM27, produces a high-defini-
tion data set (37), suitable for brain atlas construction, vali-
dation of segmentation/mapping algorithms, and MRI
simulation. (Note: Since it incorporates the structural idio-
syncracies of a single brain, it is not intended for use as a
high-definition master data set for stereotaxic normaliza-
tion.) This data set has been segmented manually to create
an accurate digital phantom (17) for use as the source tem-
plate of an MRI simulator, MRISIM (43).

MRISIM requires as input a set of ‘‘fuzzy’’ structure
maps, one for each distinct tissue (or structure) type to be
modeled, in which each voxel value is the probability of
that voxel containing that tissue (structure) type. Such maps
are generated by algorithms like INSECT or ANIMAL (see
below) applied to a high-SNR data set. The MRI signal is
simulated by solving the Bloch equations for the specified
pulse sequence and tissue relaxation characteristics. Noise
is modeled from first principles rather than by adding some
parametric (e.g., gaussian) noise distribution to the expecta-
tion image (42). MRISIM has been used in validation stud-
ies for correction of MRI intensity nonuniformity (67) and
tissue classification (84). It has been used to create a database
of 108 simulate MRI images [3 slice thicknesses � 3 tissue
contrasts (T1/T2/PD) � 3 noise levels � 4 levels of radio-

FIGURE 24.2. N3 correction for intensity nonuniformity. MRI image before (left) and after (mid-
dle) correction for nonuniformity field (right), estimated using N3. Note the increased uniformity
of white matter regions.

frequency (RF) inhomogeneity], available at Web site http://
www.bic.mni.mcgill.ca.

Correction for 3D Intensity
Nonuniformity—N3

A major problem for automated MRI image segmentation
is the slowly varying change in signal intensity over the
image, caused principally by nonuniformities in the radio-
frequency field (Fig. 24.2). Apparent signal from any one
tissue type is therefore different from one brain area to an-
other, confusing automated segmentation algorithms that
assume constant signal for one tissue type. We have devel-
oped a fully automated 3D technique for inhomogeneity
correction, modeling inhomogeneity as the convolution of
the true MRI intensity histogram with a blurring kernel.
This effective kernel can be estimated and deconvolved by
iterative entropy maximization. The method is applicable
to any pulse sequence, field strength, and scanner (66,67).

Intrasubject Image
Alignment—MINCTRACC

Alignment of images from the same subject, either from the
same modality at different times in a longitudinal study or
from different modalities, is achieved using a linear version
of ANIMAL (see below), constrained to a six-parameter
(three rotation, three translation) rigid-body transformation
(15).

Stereotaxic Transformation—MRITOTAL

Stereotaxic transformation is achieved using a simple nine-
parameter linear [three rotation, three translation, three
scale, (15)] transformation to match the image volume to
a master data set already resident in stereotaxic space. The
master data set therefore defines the gross dimensions and
orientation of stereotaxic space. We have previously con-
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structed a composite stereotaxic MRI data set drawn from
305 normal subjects, sampled on a 1-mm voxel grid (24),
as that master data set. This mean data set, now termed
ICBM305, has been circulated to over 100 international
sites and defines the stereotaxic space for the SPM statistical
package. That data set was derived from T1-weighted data
with 2-mm-thick slice data. More recently, this has been
superseded by a composite data set derived from 1-mm-
thick data collected within the ICBM project (see below).
That latter data set, while exhibiting higher contrast and
more anatomic detail than the original ICBM305, was
nevertheless mapped into the space of the ICBM305 using
the nine-parameter MRITOTAL and is therefore a deriva-
tive of that first data set.

Tissue Classification—INSECT

We have developed an algorithm for tissue classification,
known as INSECT (Intensity-Normalized Stereotaxic Envi-

FIGURE 24.3. Classification with andwithout correction for intensity nonuniformity: tissue classi-
fication with INSECT with and without correction for nonuniformity using N3. An idealized 3D
digital phantom was created from by segmentation of a high–signal-to-noise ratio (SNR) data set
(17, 37). The initial phantom data (top left) contains three classes: cerebrospinal fluid (CSF) (black),
gray matter (dark gray), and white matter (light gray). This phantom was used to generate a
simulated MRI image with (top middle) and without (top right) a 20% inhomogeneity running
from top left tobottom rightof the image. The INSECT-classified imagewithout prior N3 correction
(bottom left) exhibits artifactually thicker cortex at bottom right and thinner cortex at top left
of the image, respectively, a consequence of the field inhomogeneity gradient. This artifact is
removed in the N3-corrected classification (bottom right).

ronment for Classification of Tissue) (25,63,84). The algo-
rithm operates upon multispectral (typically T1-, T2-, PD-
weighted) data sets. In a series of preprocessing steps, each
MRI data set is corrected for intensity nonuniformity (67),
interslice normalization, and intersubject intensity normal-
ization (Fig. 24.3). Stereotaxic transformation is then per-
formed (15). An artificial neural network (ANN) classifier
with one hidden layer is used to assign each voxel to a tissue
type (gray/white/CSF) based on its MRI intensity feature
space. The algorithm also employs tissue likelihood, based
on the spatial location of the voxel in stereotaxic space, as
orthogonal prior information to constrain the feature-space
assignment. For example, periorbital fat exhibits a similar
feature-space signal as white matter and, without considera-
tion of spatial location, would be classified as white matter.
Spatial masks expressing the normal distribution of tissue
classes in the population (see Fig. 24.8) indicate that the
likelihood of finding white matter in the periorbital stereo-
taxic region is small, and reduce the likelihood of misclassifi-
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FIGURE 24.4. ANIMAL warping. Slice through a 3D ANIMAL de-
formation. The left image was warped to match the right, with
the result in the middle.

ation. INSECT operates on an arbitrary number of input
images and generates a user-selected number of output tissue
maps.

Regional Parcellation—ANIMAL

Manual labeling of brain voxels is both time-consuming
and subjective. We have previously developed an automated
algorithm to perform this labeling in 3D (13). The ANI-
MAL algorithm (Automated Nonlinear Image Matching
and Anatomical Labeling), deforms one MRI volume to
match another, previously labeled, MRI volume. It builds
up the 3D nonlinear deformation field in a piecewise linear
fashion, fitting cubical neighborhoods in sequence using a
mutual information residual for parameter optimization
(Fig. 24.4). The algorithm is applied iteratively in a mul-
tiscale hierarchy. At each step, image volumes are convolved
with a 3D gaussian blurring kernel of successively smaller
width [32-, 16-, 8-, 4-, and 2-mm full-width at half-maxi-

FIGURE 24.5. Average cortical surface. Average of 150 normal cortical surfaces. Note the promi-
nence of the major gyral and sulcal features common to all brains.

mum (FWHM)]. Anatomic labels are defined in the new
volume by interpolation from the original labels, via the
spatial mapping of the 3D deformation field. Originally,
ANIMAL used 3D gradient magnitude as the image prop-
erty to be matched. The ridge-tracking Lvv operator is now
used to extract additional topologic information on brain
shape in each image. Furthermore, the surface trace of major
sulci, represented as 3D line segments, can be used as local
constraints on image deformation (14,16). Both steps in-
crease the correspondence of cortical anatomy across brains.

Cortical Surface Segmentation and
Unfolding—ASP

We have previously developed a fully automated procedure
for unfolding the entire human cortex, using an algorithm
that automatically fits a 3D mesh model to the cortical
surface extracted from MRI (47). This algorithm, MSD,
uses an iterative minimization of a cost function that bal-
ances the distance of the deforming surface from (a) the
target surface, and (b) the previous iteration surface (Fig.
24.5). Specification of the relative weight of these compet-
ing forces allows MSD to range from unconstrained (data-
driven) deformation to tightly constrained (model-preserv-
ing) deformation. Further shape-preserving constraints to
penalize excessive local stretching and bending of the model
surface are also employed. The initial mesh surface can be
chosen arbitrarily to be a simple geometric object, such as
a sphere, an ellipsoid, or two independently fitted hemi-
spheres. The MSD algorithm has formed the basis of corti-
cal analysis at both MNI and UCLA within the ICBM
project (71–73). Recently, the algorithm has been extended
to allow multiple concentric surfaces to be mapped simul-
taneously. The new algorithm, Automatic Segmentation
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using Proximities (ASP), has the following refinements and
capabilities (48), compared with the earlier MSD version:

� A boundary search along the normal local surface is used
to increase the range of attraction of edges.

� The use of proximity constraints with appropriate
weights excludes the potential for impossible self-inter-
secting surface configurations.

� Some arbitrary weights are replaced by more intuitive
geometric constraints.

� Multiple surfaces, models, and data sets may be combined
into a single objective function.

� Automatic identification of the total cerebral cortical sur-
face from MR images is achieved in a robust way with
respect to partial volume effects.

� A preliminary map of cortical gray matter thickness has
been produced and related to previous studies.

� A higher resolution average brain surface has been created
using the deeper sulcal penetration of ASP compared to
earlier versions of this algorithm (47).

FIGURE 24.6. Cortical thickness. Mean cortical thickness in 150 normal adult brains,
color-coded and texture-mapped onto the average cortical surface obtained from the
same population.

As an alternative form of stereotaxy applicable to cortical
analysis, ASP also provides a fully automated mapping from
3D to an unfolded surface space. Since ASP iteratively de-
forms a starting 3D polygonal mesh onto the 3D cortical
surface, the inverse mapping projects this fitted surface and
topologic feature at each surface vertex back to the model
space (47,48). Individual anatomic features such as gyral
ridges and sulcal valleys are converted to measures of topol-
ogy, e.g., curvature, mapped on to the model surface. These
can be analyzed in terms of 2D variability on the surface
of the starting model using a 2D surface coordinate space
(Fig. 24.6).

Sulcal Extraction and Labeling—SEAL

We have implemented an automated sulcal extraction and
labeling algorithm (SEAL) (45). At every voxel on the ASP-
generated exterior cortical isosurface, SEAL calculates the
two principal curvatures: k1, the mean curvature, and k2,
the gaussian curvature (g � k1 * k2). Voxels with negative
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FIGURE 24.7. Use of spatial priors for automatic sulcus labeling within the sulcal extraction and
labeling algorithm (SEAL). 3D representation of labeled sulcal folds occurs either automatically
with SEAL, using prior probabilities (left), or manually labeled by a neuroanatomist (right). Differ-
ent colors represent different sulcal labels, e.g., central sulcus is colored magenta (the smooth
object is an average MRI surface, reduced in scale, included only to provide context for the sulcal
maps). The automated and manual labeling of the sulci are in broad agreement, although some
differences are apparent.

mean curvature, belonging to sulci, are extracted and
pruned to obtain a set of sulcal traces on the cortical surface.
SEAL extracts the buried sulcus with an ‘‘active ribbon’’
that evolves in 3D from a superficial trace to the bottom
of a sulcus by optimizing an energy function. We have de-
fined a relational graph structure that stores, for each sulcus,
its length, depth, and orientation, as well as attributes, e.g.,
hemisphere, lobe, sulcus type, connecting sulci, etc. Sulcal
labeling is performed semiautomatically by tagging a sulcal
trace in the 3D graph and selecting from a menu of candi-
date labels. The menu is restricted to most likely candidates
by the use of sulcal probabilistic maps. SEAL identifies the
sulci maps that overlap with each selected sulcus with high-
est likelihood (44,45) (Fig. 24.7).

SAMPLE APPLICATIONS

ICBM: Multicenter Consortium on
Statistical Neuroanatomy

The International Consortium for Brain Mapping (ICBM)
multicenter initiative was launched in 1993 as part of the
Human Brain Project (52). Its overall goal is to create a 3D
probabilistic brain atlas, based on MRI volumes from 450
normal adult brains. Within the ICBM project, all scans
at all sites were collected with a strictly defined protocol,
specifying three MRI volumes per subject (a 1-mm-thick,
1-mm-spaced gradient echo sequence for T1-weighted data
and a 2-mm-thick, 1-mm-spaced double-echo sequence for
PD and T2-weighted volumes). This database as been seg-
mented using the pipeline environment described above and
the variability captured in the form of probability maps
as follows. Neuroanatomic variability can be conveniently
represented in the form of 3D stereotaxic maps where each

voxel expresses the likelihood of finding a particular struc-
ture at that location. By labeling one structure, e.g., caudate
nucleus, in an ensemble of stereotaxic MRI volumes, a con-
tinuous 3D probability field for that structure (0% to 100%
at each voxel), termed a statistical probability anatomy map
(SPAM), can be constructed and used to test for group
difference, e.g., pediatric versus adult brains, or outliers.
For visualization purposes, these statistical maps can the
thresholded at any level of structural probability to create
probability isosurfaces suitable for surface-rendering and 3D
display. Example SPAMs are shown for (a) gray/white/CSF
tissue classes (INSECT, Fig. 24.8); (b) all major cortical
gyri, cerebellum, and deep nuclei (ANIMAL, Figs. 24.8 and
24.9); and (c) cortical surface (ASP) (23).

Multicenter Clinical Trial Image Analysis

The principles of pipeline analysis described above for large
databases of normal brain MRI data are equally applicable
for population analysis of neuropathology or for tracking
structural change over time, such as the progressive tissue
atrophy, which occurs in some degenerative diseases. In-
deed, the MRI analysis employed within the ICBM project
was originally developed for a multicenter phase III clinical
trial of a new pharmaceutical for treatment of multiple scle-
rosis. In this trial, 14 centers in the U.S. and Canada col-
lected a total of 1,850 data sets, each data set composed
of T1, T2, and PD volumes, from 514 subjects. All data
collection was coordinated by the BIC clinical trials group,
which performed quality control before trial launch and for
all data shipped to the BIC for processing. Pipeline analysis
of the database was used to generate 3D statistical maps of
normal tissues and of MS lesions. In validation studies, the
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FIGURE 24.8. Tissue probability maps. Left: Cuts through INSECT-generated 3D tissue class maps
for gray matter, white matter, and cerebrospinal fluid (CSF). Right: Serial sagittal sections through
Talairach atlas with ANIMAL-generated probabilistic frontal cortex SPAM (statistical probability
anatomy map) overlaid. In both cases 100 subjects were used to generate the SPAMs.

results obtained with this automated approach for a subset
of images were compared with those obtained by totally
manual methods at seven established MRI/MS sites in Eu-
rope and North America. The results of the comparison
indicated no significant differences between the BIC ap-
proach and the mean result obtained across the seven sites.
They also indicate considerable variability among the sites
themselves when analyzing the same data, which emphasizes
the importance of the reproducibility of results obtained
with a fully automated approach.

After correction for MRI intensity inhomogeneity, in-
terslice and intervolume intensity normalization, and stereo-
taxic transformation, the multispectral data were tissue clas-
sified to identify MS lesion voxels for each patient time
point. Figure 24.10 shows a 3D rendering of a probability
map for lesion distribution obtained from all data sets. It
shows the most likely locations for MS lesions within a

FIGURE 24.9. Rendered probabilistic atlas.
Volume rendering (top left) and surface ren-
derings (all others) of the 3D probabilistic
atlas (N � 100). For the surface renderings,
the SPAMs were thresholded at the 40% level
to generate regional probability isosurfaces.

population and is a convenient way to distill a large amount
of population data into a single entity. Tests of drug effect
are reduced to testing for a significant group difference in
the overall volume of this distribution above a given thresh-
old when partitioned into drug and placebo groups.

NIMH Intramural Pediatric Database

As part of an ongoing collaboration with Drs. Jay Giedd and
Judy Rapoport at the National Institute of Mental Health
(NIMH) Child Psychiatry Branch, the BIC image analysis
pipeline has been used to process a large pediatric MRI
database collected at the NIMH. Subjects were scanned on
a General Electric 1.5 tesla Signa scanner using a 3D SPGR
protocol. Approximately 1,800 T1-weighted images with
slice thickness of 1.5 to 2.0 mm in the axial plane have
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FIGURE 24.10. Multiple sclerosis (MS) lesion probability map. 3D
renderings of probability maps for MS lesion (light region) and
ventricle (dark region), obtained from 460 patients.

been obtained in approximately 600 children aged 3 to 18
from a number of subgroups:
� Normal development: A subset of this database, 111 nor-

mal children aged 4 to 17, was processed using the IN-
SECT algorithm. All data were resampled into stereotaxic
space using a simple nine-parameter linear transforma-
tion prior to image segmentation. Regression of popula-
tion mean white matter intensity at each stereotaxic voxel
against age yielded a regression map with significant cor-
relation in the left arcuate fasciculus and the bilaterally
in the internal capsule (33,61). The former tract links
the anterior and posterior speech regions, while the latter
is part of the corticospinal motor tract. These areas are
continuously developing during maturation and it is
tempting to interpret the results as increased myelination
in these areas during development.

A subset of the intramural NIMH database has also
been analyzed by the ICBM group at UCLA under the
direction of Arthur Toga (74). Using MSD-generated
surfaces and tensor field analysis, they produced four-

FIGURE 24.11. White matter density changes during
pediatric development. Regression maps of white
matter density changes over the age range from 4
to 17 (61). These maps show increased white matter
density, possibly myelination, in the left arcuate fasci-
culus (left) and internal capsule (right), white matter
tracts implicated in the development of language and
motor skills, respectively.

dimensional quantitative maps of growth patterns in the
developing brain. Serial scanning in children aged 3 to
15 years across time spans of up to 4 years revealed a
rostrocaudal wave of growth in the corpus callosum, a
fiber system that relays information between brain hemi-
spheres (Fig. 24.11). Peak growth rates, in fibers innervat-
ing association and language cortices, were attenuated
after puberty, and contrasted sharply with a severe, spa-
tially localized loss of subcortical gray matter. Conversely,
at ages 3 to 6 years, the fastest growth rates occurred
in frontal networks that regulate the planning of new
actions.

� Child-onset schizophrenia: Fifteen patients with child-
hood-onset schizophrenia and 34 temporally yoked,
healthy adolescents, scanned twice with an interval of 4
years, were analyzed using the pipeline (64). Lobar gray
and white matter volumes were obtained with INSECT
and ANIMAL. A significant decrease in cortical gray mat-
ter volume was seen for healthy controls in the frontal
(2.6%) and parietal (4.1%) regions. For the childhood-
onset schizophrenia group, there was a decrease in volume
in these regions (10.9% and 8.5%, respectively) as well
as a 7% decrease in volume in the temporal gray matter.
Thus, the childhood-onset schizophrenia group showed
a distinctive disease-specific pattern, with the frontal and
temporal regions showing the greatest between-group dif-
ferences. Changes in white matter volume did not differ
significantly between the two groups. Patients with very
early onset schizophrenia exhibit a fourfold greater de-
crease in cortical gray matter volume during adolescence
and a disease-specific pattern of change.

� Attention-deficit/hyperactivity disorder (ADHD): Ana-
tomic studies of boys with ADHD have previously de-
tected volumetric differences in basal ganglia, prefrontal
regions, and the cerebellar vermis. This study sought to
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replicate those findings in young girls. MRI data from
53 girls with ADHD and 44 healthy matched female
controls, ages 5 to 15, were analyzed using ANIMAL.
Significantly smaller volumes were observed in prefrontal
brain regions, caudate nucleus, globus pallidus, and
amygdala bilaterally. The posterior-inferior cerebellar
vermis volume and the rostrum of the corpus callosum
were also significantly smaller in the ADHD group. Sig-
nificantly smaller volumes were seen in the same brain
regions as previously reported in boys with ADHD. As
in boys, ADHD in girls is associated with anatomic devia-
tions in corticostriatal-pallidal-thalamic circuits and in
the posterior-inferior cerebellar vermis (9).

NIH Extramural Pediatric MRI Database

The NIMH intramural database above has been acquired
with only T1-weighted information and sparse behavioral
information from a variety of subgroups, including approxi-
mately 200 normal children aged 3 to 8. While this database
will provide much valuable information on pediatric devel-
opment, there remains a need to create a more complete
database of MRI information from a larger cohort of normal
children, well-characterized by behavioral batteries. There-
fore, a recent joint initiative by three National Institutes of
Health (NIH) agencies (NIMH, NICHD, NINDS) has
been launched to create such an MRI database of normal
pediatric development in 550 children. This project, draw-
ing upon a clinical trial model, will collect identical imaging
and behavioral data at seven U.S. sites. The data will be
consolidated into a single database at the BIC for pipeline
analysis and eventual dissemination to the community.
Each child in the age range of 5 to 18 will be scanned three
times over a 6-year period. Behavioral batteries covering the
major performance criteria will be collected at each time
point. A younger cohort of approximately 100 children,
aged 0 to 5, will undergo a more frequent scanning protocol
and an age-appropriate behavioral battery. Magnetic reso-
nance spectroscopy (MRS) and diffusion tensor imaging
(DTI) information will also be collected at three of the sites
to provide information on developmental neurochemistry,
myelination, and fiber tract development.

SUMMARY AND FUTURE DIRECTIONS

This chapter has presented an overview and sample applica-
tions of the MRI analysis pipeline environment at the Brain
Imaging Centre (BIC) of the Montreal Neurological Insti-
tute. The key conceptual elements of this environment are
as follows:

1. The use of stereotaxic space for consolidation of large
ensembles of MRI data into a common spatial frame for
analysis of gross neuroanatomy;

2. Fully automated 3D image preprocessing and segmenta-
tion;

3. Statistical analysis using voxel-bases random field theory
and general linear models;

4. Incorporation of nonimaging parameters such as behav-
ioral variables, demographic information, and genetic
data into the statistical models.

The pipeline is highly modular, allowing for separate
development and continued upgrading of the individual
elements making up the pipeline. Processing is distributed
across the BIC computing infrastructure using the PCS con-
trol scripts to optimize the utilization of resources. It has
application in a variety of settings from basic neuroscience
through clinical research to clinical trials. However, the cur-
rent environment is focused on gross morphology. Conven-
tional MRI allows us to collect gross anatomic information
from a large sample of brains and develop population statis-
tics. Unfortunately, this level of analysis provides no infor-
mation about the cellular and molecular organization of the
brain at a finer scale. A full understanding of functional
neuroanatomy links function to macroscopic anatomy via
these ultrastructural segregations. High-field MRI offers
new possibilities, providing resolution of a few hundred mi-
crons over limited volumes. Sectioning, staining, and optical
digitization of cadaver brains allow even finer spatial and
chemical resolution in limited numbers of brains. A number
of sites are bringing together these new acquisition technol-
ogies with the concepts of 3D stereotaxic mapping to create
probabilistic maps at this finer scale. The advantage of the
stereotaxic approach is that information from these many
techniques operating at different spatial scales can be consol-
idated over many years into a systematic description of the
whole brain structure and function. Such a rich database
of information on both cerebral structure and function, ac-
cessible to sophisticated computational and statistical explo-
ration, offers exciting possibilities for future brain research
and clinical practice. Quite apart from direct hypothesis
testing, such an environment may allow for the detection of
hitherto unsuspected patterns of interaction among normal
brain elements and the isolation of constellations of mea-
surements that characterize specific disease states.
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