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APPLYING FUNCTIONAL GENOMICS
TO NEUROPSYCHOPHARMACOLOGY

MICHAEL BROWNSTEIN

‘‘The time has come,’’ the Walrus said, ‘‘to talk of many
things.’’ Lewis Carroll

The time has come indeed. The sequencing of the human
genome and the genomes of a number of other species sub-
ject to research (1–6) have paved the way for new sorts of
studies. Soon researchers will be able to look at the response
of every human gene to specific manipulations or develop-
mental events at multiple time points. This will require
a new mindset. Researchers will not necessarily be testing
specific hypotheses as they have done in the past. Instead,
they will rely on the emergence of patterns and systematic
features in their data sets (and those of others) to describe
the phenomena being examined. Such patterns may hint at
functions of collections of genes, the interactions of their
products, and their importance in physiologic and patho-
logic processes. This chapter introduces array technology,
discusses the sorts of experiments that can now be done
with it, and suggests future advances. Several reviews have
already been published on this subject, and the reader
should refer to them for additional information (7–15). In
addition, university, government, and commercial Web
sites are valuable sources of news, background material, re-
agents, arrays, software, and instrumentation (16–33).

EARLY STUDIES OF GENE EXPRESSION

The human genome is composed of approximately 3 billion
DNA nucleotides encoding more than 100,000 genes (16).
Each of these genes must be turned on or off in the right
cells at the right time for an individual to develop and pros-
per. The genes that are ultimately expressed in a particular
tissue define it. That is, brain is brain and liver is liver
because of the particular collections of transcripts found
in their respective cells. Brain, however, is extraordinarily
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heterogeneous. It has been estimated that nearly half of the
genes in the genome are expressed there, distributed among
the different neuronal and glial populations.

Genes are made of DNA, a nucleic acid polymer that
has deoxyribose as its sugar backbone. Each sugar moiety
in the chain has a base (adenine, A; cytosine, C; guanine,
G; or thymine, T) attached to it. DNA exists as a double-
stranded helix. The two antiparallel strands are bound to
one another because their sequences are complemen-
tary—that is, the opposing bases are held together by hydro-
gen bonds, A to T and C to G. Similarly, messenger RNA
(mRNA), the transcription product of the coding region of
each gene, is complementary to the DNA strand from which
it was copied and can bind to it. Northern blotting, the
first method developed for detecting single mRNA species
in a cellular extract, is based on this phenomenon. In this
technique, RNA samples are fractionated by agarose gel
electrophoresis, and the RNA bands are transferred (blotted)
onto nitrocellulose membranes. Single RNA species can
then be detected by hybridizing a radiolabeled DNA to the
blot that is complementary to the RNA of interest.

In the past, the responses of cells or organisms to environ-
mental cues were studied on a small scale, one gene or path-
way at a time. Initially, Northern blotting was used to exam-
ine the abundance of specific mRNA species. Subsequently,
other methods were chosen because they were simpler and
more sensitive, such as reverse-transcriptase polymerase
chain reaction (RT-PCR) (34), or because they were more
comprehensive, such as SAGE (serial analysis of gene expres-
sion) (35,36). These techniques provide useful information,
but they are tedious, time-consuming, and expensive to em-
ploy.

In the last 5 years, spurred by the availability of large
volumes of genomic and cDNA (EST [expressed sequence
tag]) sequence data from a variety of organisms, investiga-
tors have developed methods to study mRNA profiles in
cells and tissues by means of large-scale, high-throughput,
parallel methods. In the future, it would be helpful to look at
protein and small molecule profiles as well, but the reagents
required (panels of antibodies, for example) are difficult to
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assemble and utilize. Even though there is not a one-to-one
correspondence between the level of a particular transcript
in a cell and that of its translation products, a great deal
can be learned by performing mRNA expression profiling.

GENE EXPRESSION ARRAYS

Expression profiling relies on large ordered collections of
cDNAs immobilized on glass (microarrays) or synthetic oli-
gonucleotides immobilized on silica wafers or chips (probe
arrays). Both of these methods are the conceptual descen-
dants of target nucleic acids immobilized on filters or mem-
branes and detected with complementary radioactive
probes. While filter-based systems are commercially avail-
able, reasonably priced, and fairly easy to use, it is clear that
they will be preempted by glass or chip arrays developed
with fluorescent probes. Glass arrays printed on microscope
slides are now much cheaper to employ than chips, and
many universities and research institutes have already built
facilities for printing and probing such arrays. So it is worth
discussing the uses to which such arrays have already been
put, and the uses to which neuropsychopharmacologists
could put them.

Few investigators have used arrays to study brain so far,
preferring instead to look at mammalian cell lines and tu-
mors (37–44). In addition, many workers have focused on
yeast (45,46) or prokaryotes (47,48) because their genomes
are small and have been completely sequenced. Conse-
quently, every protein-encoding gene can be arrayed and
examined. This will be true of human and mouse arrays in
the not-too-distant future. Meanwhile, experiments can be
done with the arrays that are available. These have between
a few thousand and a few tens of thousands of elements,
and with them we can begin to catalogue genes expressed
in regions of the developing and adult nervous system, and
to look for alterations in expression patterns associated with
pathologic states or physiologic/pharmacologic manipula-
tions (49). Consider, for example, the work that could be
done to understand the mechanism(s) of action of selective
serotonin reuptake inhibitors (SSRIs) and the reason for
their delayed onset of action in depressed patients. As is
known, SSRIs increase the availability of serotonin (5-hy-
droxytryptamine, 5-HT) to presynaptic and postsynaptic
receptors, of which there are at least 14 subtypes (50).
Among these, 5-HT1A receptors on serotoninergic raphe
neurons are thought to play a key role in regulation 5-
HT release (51). 5-HT1A agonists, which are used to treat
anxiety, inhibit serotonin secretion. Conversely, desensitiza-
tion of 5-HT1A receptors, which could result from elevated
5-HT levels in the synaptic space following SSRI adminis-
tration, may have the opposite effect—an increase in 5-HT
release by raphe neurons, and chronic stimulation of 5-HT
receptors in regions such as the hippocampus, amygdala,
and septum. Despite all the research that has been done to

date, the identity of the structures and biochemical altera-
tions that are responsible for the antidepressant actions of
SSRIs is still moot.

Array experiments will allow investigators to explore the
serotoninergic system in a way that is model independent
and comprehensive, and the experiments should become
easy and cheap enough to perform to permit varying many
parameters and comparing many conditions.

Initially, regional responses to a single dose of SSRI at
a variety of times in one mouse strain might be examined.
Subsequently, mouse strains that differ in their behavioral
reactions to SSRIs could be examined; knockout mice
known to have altered responses to SSRIs (e.g., 5-HT1A

receptor knockouts) could be studied; and drugs that resem-
ble, facilitate, or inhibit the behavioral effects of SSRIs could
be investigated. Mice would be better to use for this work
than rats as of now because very big mouse arrays are avail-
able as are genetically manipulated animals and a variety of
well-characterized inbred strains. Unfortunately, mice have
small brains, and obtaining samples of minute regions (e.g.,
raphe nuclei) large enough to make sufficient RNA for label-
ing is difficult. Help is on the way, though. Better labeling
methods, dyes, and detection devices are being developed.
In fact, the amount of total RNA needed for an array experi-
ment has already fallen well below 1 �g, and should ap-
proach 1 ng shortly.

Each array experiment will let an investigator look simul-
taneously at thousands of transcripts including those encod-
ing enzymes involved in energy metabolism, receptors, G
proteins, second messengers, and ion channels, to name a
few. In addition, there will be many species represented on
big arrays, the actions of which are unknown. The major
task will be to assign them functions (see below).

THE DEVIL IS IN THE DETAILS

Methods for making and probing arrays and analyzing array
data have developed quickly. In spite of this, the supply of
arrays has not kept up with demand, and demand should
increase dramatically if the goal of using arrays is to compare
many conditions and then mine the data systematically for
patterns of gene expression. Thus, as stated earlier, costly
products are unlikely to gain wide acceptance, and glass
slide arrays are likely to be most commonly employed. For
this reason, I now discuss their production and use.

Large collections of cDNAs and their sequences are now
in the public domain. Some sets of cDNAs have been se-
quence verified and are ideal to use for preparing arrays;
others have not been validated and are less useful. To make
arrays, plasmid DNA is prepared from gridded sets of clones
to be printed, and (typically) the 3′ end of each cDNA is
amplified by PCR. The purified PCR products are then
spotted using a robotic arrayer. It is possible to fabricate
one’s own arrayer (18), but many investigators will prefer
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to buy an instrument or obtain arrays from core facilities
or commercial vendors. Many thousands of 100-�M spots
can be printed on a single glass microscope slide (see ref.
10 for details).

It is important to realize that array experiments do not
permit measurement of the amount of each RNA that is
present in a sample. This is because the relationship between
the amount of transcript in a mixture and the intensity of
the fluorescent spot it produces is a complex one—in-
fluenced by labeling efficiency, hybridization and wash con-
ditions, and the sequence, quality, and quantity of the
printed DNA. Thus, microarrays are typically employed to
measure the relative abundances of RNA species in two or
more extracts. To achieve this goal, in a two-sample experi-
ment the RNAs are separately labeled with dyes of different
colors, and then the products are mixed and hybridized to
the arrayed spots (Fig. 23.1). After washing, the slides are
scanned with a ‘‘reader’’ or ‘‘scanner’’ and the intensities of
the fluorescent signals produced by the two separate dyes are
determined spot by spot. Following background subtraction
and ‘‘normalization’’ of the signals from the two channels
(see below), a ratio of intensities of the two colors is deter-
mined for each spot, and the relative abundance of the two
input RNAs can then be estimated. Finally, ‘‘clustering’’
methods are used to sort and display the data.

FIGURE 23.1. To perform microarray experiments, RNA is puri-
fied from two or more samples of cultured cells or dissected tis-
sues. These RNAs are used to produce labeled probes. In the exam-
ple given, the dye cy5, which fluoresces red, was used to label
probe from sample 1; and the dye cy3, which fluoresces green,
was used to label probe from sample 2. The labeled products are
mixed and hybridized to the spots on the microarray. Following
a wash step, the array is scanned and the signals from the red
and green channels are superimposed. If an RNA species is more
abundant in sample 1 than 2, the resulting spot will be red; in
the reverse case, the spot will be green. When the RNA is equally
abundant in the two samples, the spot is yellow. See color version
of figure.

Two sorts of experimental paradigms have been defined:
type I and type II (42). In the former, two samples are
compared to one another; in the latter, multiple samples
are compared. To look at multiple samples (e.g., time
points, drug doses, developmental ages, brain regions, au-
topsy specimens), each sample in the set could theoretically
be labeled with a different fluorescent dye that could, in
turn, be visualized with a different laser. Presently, most
commercial readers have only two lasers, but four-color in-
struments have already appeared on the market. (The num-
ber of dyes that it is possible to use for labeling RNA samples
is dictated by a reader’s ability to resolve the signal from
individual dyes and the strength of the signal each dye pro-
duces.)

To use a two-color scanner for multiple comparisons,
discrete samples must be compared to a reference standard.
The ideal standard would have modest amounts of each
transcript represented on the array used, because it needs
to generate a nonzero denominator for the hybridization
ratio. In the case of the mouse, the 17-day embryo and/or
the adult brain have been proposed as sources of standard
RNA. Pools of cell-line RNAs have been used as standards
for human work. It would be useful if a central source of
standards existed and if huge batches were prepared.

NORMALIZING RATIOS

Since it is difficult, if not impossible, to measure the amount
of RNA used to produce a labeled probe, normalizing the
signals from the source RNAs is essential. To do this, a set
of ‘‘housekeeping genes’’ is chosen because their transcrip-
tion is fairly constant across a range of conditions. The ratio
of signals from these genes is set to 1. The housekeeping
set needs to be defined empirically, and in looking for candi-
dates to include in such a set, few genes have been found
that have constant expression levels. When large arrays are
used, this is not a problem; hundreds of genes (or the entire
set of genes) can be used for ‘‘global normalization’’ (Fig.
23.2). When small arrays are employed, on the other hand,
the size and composition of the gene set used for normaliza-
tion are very important. Just as a reference standard is ur-
gently needed now, a normalization set supplied by a central
site would be quite valuable.

QUALITY CONTROL

While we have methods to assess the quality of DNA se-
quence data, for example, there is no generally accepted
method for establishing the quality of an array study. In
spite of this, there are some controls that can be built into
an array. As noted earlier, scientists are arraying DNAs gen-
erated by PCR from plasmid templates. It is highly desirable
to use sequence-verified cDNA sets. Amplifying these with
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FIGURE 23.2. Normalization. Most genes, especially those with
‘‘housekeeping’’ functions, do not change very much from one
experimental condition to another. For this reason, housekeeping
genes, or the entire collection of genes on a large array, can be
used to set the ratio of signals from the two color channels to 1
as shown here. See color version of figure.

specific primers would confirm the identity of each clone,
but this is expensive. Assuming we can obtain a reasonably
well-validated clone set, the cheapest way to produce the
1.5- to 2.0-kilobase (kb) DNAs for printing is to use vector
primers, and to analyze the products on agarose gels. The
resulting cDNAs will include T-tails of varying lengths, and
repeat sequences. Hybridization of labeled probe to these
sequences is prevented by addition of a blocking solution
containing oligo (dA) 20-mers, yeast transfer RNA (tRNA),
and (for human probes) Cot-1 DNA to the probe solution.
To show that the blocking was successful, a number of nega-
tive controls should be included among the samples arrayed:
spotting buffer, Cot-1 and human genomic DNA, plasmid
DNA, oligo (dT), and oligo (dA).

It is useful to array targets for nonmammalian transcripts
and to ‘‘spike’’ the samples with the corresponding polyA-
tailed RNAs. These RNAs can be added in different concen-
trations to crude tissue extracts, total RNA samples, or puri-
fied polyA-plus RNA to determine extraction efficiencies
and detection sensitivities. It would be a mistake to imagine
that the added RNA standards can be used to generate fig-
ures for absolute amounts of RNA in samples for the reasons
given earlier. They should be used exclusively for quality
control.

An additional set of spots that have been found useful
to array are ‘‘landing lights.’’ These DNAs, which are
printed at regular intervals, are used for orientation.

SMALL SAMPLES, FALSE NEGATIVES, AND
FALSE POSITIVES

Failure to detect transcripts or changes in transcripts could
result from low-quality arrays or poor labeling methods.

Over time, the methods used to make and probe arrays
should improve, and false negatives will grow less important.
Presently, we can detect RNAs with an abundance of about
1:300,000 in a complex sample. This translates into a few
copies per cell if one is studying a homogeneous cell line.
Seeing increases in rare transcripts under these circum-
stances should be simple, but measuring decreases will diffi-
cult if not impossible when one can barely detect a weak
signal in the first place. Since brain samples are much more
heterogeneous than cell lines, the problem of detecting rare
mRNAs is even harder. For this reason, it may be necessary
to isolate neuronal populations from brain sections by mi-
crodissection or to collect single neurons by laser capture
methods to enrich and study rare, cell-specific transcripts.
To take full advantage of these dissection techniques, meth-
ods will have to be developed for isolating and labeling
picogram quantities of RNA. (One million cells yield about
5 to 10 �g of total RNA.) It is important to note that
labeling methods have to preserve the heterogeneity and
relative abundances of the RNAs in the samples to be stud-
ied. Care must be taken if PCR is used in the labeling
procedure to avoid biasing the sample. Novel labeling meth-
ods can be tested using arrays and serially diluted RNA
templates.

At present investigators use Northern blotting, the Taq-
Man system, or in situ hybridization histochemistry to weed
out false-positive responses of selected mRNAs. When ar-
rays are no longer limiting, this could be accomplished by
studying replicate samples, but the argument could be made
that one should focus on variations in collections of genes
instead of single ones, and that looking at many conditions
once may be more powerful than looking at the same condi-
tion many times.

BIOINFORMATICS

Analyzing the earliest, small-scale, array experiments was
simply a matter of listing the names of transcripts that ap-
peared to increase or decrease from control levels (Fig. 23.3).
As the sizes of arrays increased and labeling methods im-
proved, new algorithms had to be developed that ‘‘clus-
tered’’ the hundreds or even thousands of expression
changes found in a typical experiment. Clustering methods
permit the classification of genes on the basis of similarities
or differences in their patterns of expression across multiple
experiments (52,53). The output is usually in tabular form.
Experimental conditions are listed across the top of a table,
and names of genes listed along the side. The response of
each gene in each experimental condition is color
coded—one color (red) indicating an increase and another
(green) a decrease vs. a standard signal (Fig. 23.4). The eye
can readily detect patterns in complex images of the sort
described, and groups of genes can be identified that parallel
one another. Commonly, such genes function in concert.
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FIGURE 23.3. After normalization, a scatter plot shows that
most genes fall in a ratio � 1 space. Arrows above and below this
space point at genes with altered expression. See color version of
figure.

In the hypothetical SSRI study described above, one group
of genes may be increased or decreased in the raphe nuclei
following chronic, but not acute, treatment with drug, and
a different collection of genes is altered in areas innervated
by raphe neurons such as the hippocampus. Different sets of
genes might respond to SSRI treatment when behaviorally
responsive mouse strains are compared to unresponsive
ones, and the pattern of gene expression is different in
knockout animals that do not respond to SSRIs as compared
with animals that do. Each additional experiment may nar-
row (or broaden) the list of genes of interest.

EXPERIMENTS

G
E
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E

S

FIGURE23.4. Clustering. The clustering algorithmhas sorted the
genes that were studied in a series of experiments according to
similarities in their patterns of expression. By convention, red indi-
cates an increase from the standard used, and green a decrease.
The collections of genes that are moving up or down in parallel
can be readily seen. See color version of figure.

There are ways of evaluating data that are not completely
model-independent. Gene responses can be imposed on
metabolic charts or on maps of chromosomes. In the former
case, increases or decreases in the utilization of certain path-
ways can be detected; in the latter, deletions or changes
in copy number may be recognized, or strong positional
candidates identified.

INTERPRETING EXPERIMENTS

Recent studies of changes in gene expression in yeast associ-
ated with nutritional and environmental stresses, the cell
cycle, or genetic manipulations are examples of well planned
and executed surveys (45,46,54–56). All of the 6,200
known and predicted protein-coding genes in the yeast ge-
nome were arrayed on a single microscope slide, and suffi-
cient numbers of cells were grown to make ample amounts
of RNA for labeling. Each experiment gave a richly detailed
picture of molecular responses to a physiologic process or
perturbation.

Unfortunately, the brain is much more difficult to exam-
ine than yeast. It varies with age, and is composed of
hundreds of different sorts of cells that express, in aggregate,
as many as half of the genes in the genome in a highly
regulated manner. To determine the properties of single
populations of cells in the context of the intact structure
will be difficult, but perhaps not impossible. Initially, it
would make sense to identify all the genes expressed in the
developing and adult nervous system. This, in fact, is one
goal of the Brain Molecular Anatomy Project (BMAP) (57).
After this goal is achieved, the regional and cellular localiza-
tion of ‘‘brain genes’’ will be determined.

In addition to cataloging the transcripts in the brain, it
would be helpful to look at the reactions of isolated popula-
tions of neurons or glia to specific signals or environmental
alterations—e.g., oxidative stress, excitotoxins, neurotrans-
mitters, hormones, and drugs. Some responses may be of a
global nature—increases or decreases in energy metabolism
or protein biosynthesis—while others may be quite specific
to the cell studied or the agent administered.

The availability of transcript maps and collections of
‘‘expression motifs’’ should help us interpret some of the
changes observed in human or mouse brain samples. For
example, if it were possible to examine the responses of
isolated raphe neurons to SSRI treatment in vitro, it might
be easier to recognize similar responses in tissue samples.
Bear in mind, however, that the majority of arrayed genes
discovered by sequencing the human genome and large col-
lections of cDNAs are of unknown function. Structural mo-
tifs may hint at the function of some gene products (58),
but the role of most will remain an enigma. Expression
studies may help solve this problem because genes with simi-
lar expression profiles often have related jobs. Functional
proteomic work will be useful as well. The combination of
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two-dimensional gel electrophoresis, ultrasensitive detection
methods, and mass spectroscopic analyses will permit re-
searchers to map protein species to specific organelles or
macromolecular complexes (59). It is important to remem-
ber that most proteins in a cell do not exist or act in isola-
tion. Components of metabolic pathways and regulatory
cascades reside in protein communities. Interactions be-
tween members of such communities can be detected with
yeast two-hybrid methods, and researchers have already
begun to examine protein–protein interactions in simple
organisms on a genome-wide basis (60–62). Furthermore,
yeast ‘‘n-hybrid’’ methods have been developed that permit
one to look at protein–DNA and protein–RNA interac-
tions (63). Finally, it is worth mentioning that large collec-
tions of mice are being produced with random mutations
in their genomes. The goal of ‘‘saturation mutagenesis’’
projects is to use multiple screens to identify animals with
interesting phenotypes. The goal of investigators who are
making insertional mutations in embryonic stem (ES) cell
lines, on the other hand, is to determine the insertion site
of each cell produced so that knockout animals can be made
on demand.

In the future, in analyzing the results of array experi-
ments, the field will benefit from work on animals, proteo-
mics, and earlier expression studies too—but only if every-
one adheres to standard formats in archiving and annotating
data.

ANNOTATING EXPERIMENTS

Presently, there are no standards for annotation, but efforts
are under way to solve this problem. To create useful and
searchable archives, all features of each experiment will have
to be described in a standard way using an explicit and
unambiguous, ‘‘controlled’’ vocabulary. Some of the re-
quired vocabulary already exists. For example, DNAs spot-
ted onto an array can be given and linked to identifiers in
public databases. (Unfortunately, different databases some-
times use different identifiers for the same gene. Conse-
quently, the sequence of each DNA on an array should be
specified.) Drugs used in array experiments can be referred
to by Merck Index number (64), organisms can be described
using names in the taxonomy database (65), and mouse
strains and mutants can be named according to established
rules and guidelines (66). Much of the language needed
to describe array experiments has not been standardized,
however, and for now databases will have to contain many
free-form text fields.

For studies of autopsy samples from psychiatric patients,
a good deal of specialized information should be provided.
The patient’s age at death, gender, diagnosis, genotype (if
available), cause of death, postmortem interval, pathology,
toxicology screening results, and medication/drug abuse his-
tory should be given. The brain region dissected, dissection

method used, side of the brain sampled, specimen weight,
microdissection procedure and cells selected, RNA extrac-
tion method and quality, and labeling method are all essen-
tial fields as well. It would be useful to have quality scores
for some of these—e.g., the diagnosis and sample condition.
Short of a quality score for diagnosis, a detailed description
of the key elements of the patient’s clinical and laboratory
findings should be made available.

Annotating array experiments can be tedious and time-
consuming. I am not suggesting that the recommendations
above should all be implemented immediately. This would
hinder progress. On the other hand, the field would benefit
from well-annotated work, and the sooner guidelines are
agreed to and implemented, the better. If this chapter serves
one useful purpose, it would be to promote this agenda.
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