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INTRODUCTION

Millions of people suffer from mental illnesses or neurode-
generative diseases such as Parkinson’s disease (PD),
Alzheimer’s disease, schizophrenia, depression, addiction,
autism, dyslexia, and learning disabilities. These, among
other diseases, are in much need for better treatments.
Unfortunately, our current understanding of these disorders
is limited. In fact it is likely that most of these disorders are
not unitary conditions but may be a conglomeration of
entities that are yet to be defined. Although some progress
has been made in the treatment of psychiatric disorders
many patients do not respond to current therapies. We also
cannot predict who will respond to which treatment. This
inherent variability coupled with intrinsic differences in
pharmacology is the underlying factor that affects our
inability to predict how an individual patient may respond
to a selected therapy. Such uncertainty is distressing for
patients and families who engage repeatedly in ‘trial-and-
error’ choices in search of ‘the right fit’ and for clinicians
thus resorting to widespread switching of medications
(Weiden and Buckley, 2007) and polypharmacy (Tranulis
et al, 2008). The inordinately high personal and societal
burden of inadequate trial-and-error management under-
scores an urgent need for validated biomarkers that
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Metabolomics, the omics science of biochemistry, is a global approach to understanding regulation of metabolic pathways
and metabolic networks of a biological system. Metabolomics complements data derived from genomics, transcriptomics,
and proteomics to assist in providing a systems approach to the study of human health and disease. In this review we focus
on applications of metabolomics for the study of diseases of the nervous system. We share concepts in metabolomics, tools
used in metabolic profiling and early findings from the study of neuropsychiatric diseases, and drugs used to treat these
diseases. Metabolomics emerges as another powerful tool in central nervous system research.
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establish diagnosis, guide drug selection, and reliably
predict response to treatment (Insel, 2007; Lieberman
et al, 2005).

To understand brain function and its complexity new
ideas, new approaches, and new technologies are much
needed. Efforts to scale-up data production and analysis in
neuroscience have been escalating. Genomics including
comparative genomics, gene expression atlases and the
organization of genome-scale projects, gene microarrays,
proteomics, monitoring the activity of individual neurons
using multiple-electrode recordings, and imaging studies
have all provided powerful approaches to the study of
neurological disorders (articles in Nat Neurosci 7, 425,
published in 2004). Metabolomics the newest of the omics
approaches provides powerful tools for defining perturba-
tions in metabolic pathways and networks in human disease
(Kaddurah-Daouk et al, 2008; Kristal et al, 2007a, b; Lindon
et al, 2007; Harrigan and Goodacre, 2003). The metabolome
defines a metabolic state as regulated by net interactions
between gene and environment influences and provides
information that can possibly bridge the gap between
genotype and phenotype. It provides a missing piece to a
systems approach to the study of diseases of the central
nervous system (CNS). Metabolic signatures for CNS
disorders could result in the identification of biomarkers
for disease, for disease progression or for response to
therapy. In addition metabolomics provides powerful tools
for the process of drug discovery and drug development by
providing detailed biochemical knowledge about drug
candidates, their mechanism of action, therapeutic poten-
tial, and side effects as exemplified in this review.
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FROM THE GENOME TO THE METABOLOME
IN THE STUDY OF CNS DISORDERS

Advances in genomics, the omics field of DNA sequence
analysis, have accelerated the ability to link human disease
with its origins in the genome. Examples in the neuros-
ciences include the recognition of genetic risk factors for
Alzheimer’s disease such as amyloid mutations, APOe4 vs
APOe2 or APOe3 (Strittmatter et al, 1993; Corder et al,
1993; Strittmatter et al, 1993); PD synuclein, Parkin, Pinkl,
DJ-1 (Polymeropoulos et al, 1997; Morris, 2005; Klein et al,
2005; Kitada et al, 1998); Huntington’s disease (HD)
expanded CAG repeat in the huntingtin gene (Jenkins
et al, 2005; Myers et al, 1993; The Huntington’s Disease
Collaborative Research Group, 1993); amyotrophic lateral
sclerosis (ALS) mutations in SOD (Rosen et al, 1993), and
the importance of serotonin transporter variation in
relation to a number of neuropsychiatric syndromes such
as depression, obsessive compulsive disorder, and neuroti-
cism (Serretti et al, 2006; Bloch et al, 2008). Advances in
transcriptomics and proteomics might impact our ability to
understand neurological disorders pathogenesis.

One of the major missing pieces of the ‘-omics’ revolution
was the -omics field of quantitative metabolite analysis
known as metabolomics (with alternate names used such as
metabonomics and metabolic profiling) (Kaddurah-Daouk
et al, 2008; Kristal et al, 2007a,b; Lindon et al, 2007;
Harrigan and Goodacre, 2003). In contrast to classical
biochemical approaches that focus tightly on single
metabolites, single metabolic reactions and their kinetic
properties, and/or defined sets of linked (ie, precursor/
product, intermediary metabolism) reactions and cycles,
metabolomics collects quantitative data on a broader series
of metabolites in an attempt to gain an overall picture or
understanding of metabolism and/or metabolic shifts
associated with conditions of interest (Kristal et al,
2007a, b).

METABOLOMICS: CONCEPT, TOOLS, AND
PROCESS

Metabolomics tools enable us to study the metabolome, the
repertoire of small molecules present in cells and tissue
(Harrigan and Goodacre, 2003; Kaddurah-Daouk et al, 2008;
Kristal et al, 2007a,b; Lindon et al, 2007). The identities,
concentrations, and fluxes of these substances are the
final product of interactions between gene expression,
protein expression, and the cellular environment (Figure 1).
Unlike earlier, more rudimentary analytical methods,
metabolomics today offers analytical instruments that can
simultaneously quantitate thousands of substances present
in a biological sample of interest and sophisticated
mathematical tools that can find a molecular signal amongst
millions of pieces of data (Kell, 2004).

Metabolomics utilizes instruments that can simulta-
neously quantitate thousands of small molecules in a
biological sample. This analytical capability must then be
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Figure 1. Flow of information from the genetic code (DNA) to proteins,

and finally to metabolites. The environment and DNA affect the end
products and influence health disease states. In this case drug exposure
is the environmental alteration being tested.

joined to sophisticated mathematical tools that can identify
a molecular signal for a disease or a drug. Ideally,
metabolomics will ultimately contribute a detailed map of
the regulation of metabolic pathways, and, therefore, of the
interaction of proteins encoded by the genome with
environmental factors, including drug exposure. Therefore,
the metabolome represents a state function for an
individual at a particular point in time or after exposure
to a specific environmental stimulus (eg, a specific drug or
potentially even a mood state). Many diseases disrupt
metabolism and result in changes that are long lasting and
that can be captured as metabolic signatures. Initial
metabolomic signatures have already been reported for
several disease states, including motor neuron disease
(MND) (Rozen et al, 2005), depression (Paige et al, 2007),
schizophrenia (Holmes et al, 2006; Kaddurah-Daouk,
2006; Kaddurah-Daouk et al, 2007), Alzheimer’s disease
(Han et al, 2002), cardiovascular and coronary artery
disease (Brindle et al, 2002; Sabatine et al, 2005), hyperten-
sion (Brindle et al, 2003), subarachnoid hemorrhage
(Dunne et al, 2005), preeclampsia (Crocker et al, 2005),
type 2 diabetes (Van der Greef et al, 2007; Van Doorn et al,
2007; Wang et al, 2005; Yuan et al, 2007), liver cancer
(Yang et al, 2004), ovarian cancer (Odunsi et al, 2005),
breast cancer (Fan et al, 2005), and HD (Underwood et al,
2006). These signatures are made up of tens of metabolites
that are deregulated, with concentrations that are modified
in the disease state or after drug exposure. As a result,
analysis of these signatures and their components can
potentially provide information with regard to disease
pathophysiology.

The choice of metabolomic analytical instrumentation
and software is generally goal-specific, as each type of
instrument has certain strengths. Liquid chromatography
followed by coulometric array detection, for example, has
been used in the identification of signatures in ALS (Rozen
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et al, 2005) and most recently for PD (Bogdanov et al, 2008).
It is excellent for mapping neurotransmitter pathways (eg,
dopamine (DA) and serotonin) and pathways involved in
oxidative stress. Gas chromatography in conjunction with
mass spectroscopy is often used in the analysis of lipid
subsets (Kaddurah-Daouk et al, 2007; Watkins, 2004;
Watson, 2006). Liquid chromatography with mass spectro-
scopy is often used to obtain the largest possible
biochemical profile information subset. It is a sensitive tool
that can be used to characterize, identify, and quantify a
large number of compounds in a biological sample (Kristal
et al, 2007a,b; Fiehn, 2008; Tolstikov et al, 2007) where
metabolite concentrations might cover a broad range of
information with regard to disease pathophysiology. In
addition to popular high-sample-throughput applications,
NMR is particularly powerful for metabolite structural
determinations, including the atomic positions of isotopic
labels (eg, '°C, "N, or *H) in different isotopomers
generated during stable isotope tracer studies (Fan and
Lane, 2007). For example NMR-based high throughput
analysis has been used successfully in toxicology studies
(Coen et al, 2004; Lindon et al, 2000, 2003). NMR
applications provide detailed maps of biochemical pathways
or networks, which can also serve as crucial inputs for in
silico quantitative flux analysis (Dauner et al, 2001; de Graaf
et al, 2000).

An overview of a ‘typical’ metabolomics study is depicted
in Kaddurah-Daouk et al (2008). Samples of interest (eg,
plasma, cerebral spinal fluid, tissue biopsy, etc) are
collected, then small molecules are extracted from the
sample and are analyzed using techniques that separate and
quantitate molecules of interest as mentioned above.
Combinations of these techniques can be used to augment
separations and/or expand the analyte information col-
lected. These data sets must then be collected and curated, a
process that can take significant time for the overall
experiment yet tools are being developed to make this
process faster (Styczynski et al, 2007). After curation, the
data are analyzed by one or more software packages
designed for studies of data sets that are far too large for
human evaluation. A database is then generated for the
diseased patients and another for the controls or for the
same patients before and after drug therapy. These
databases include levels of detectable metabolites and
identity (or a description of the properties) of the
metabolites (ie, oxidation-reduction potential, mass/charge
ratio, etc, whenever known.)

The application of software tools for the analysis of the
information contained in a database can: (1) identify
signature of a disease (eg, compounds that highlight a
disease state); (2) predict class (eg, disease or control, pre-
or postdrug exposure); (3) identify unrecognized groups in
the data (eg, drug response subgroups); (4) identify
interactions between variables; and (5) place these variables
within known biochemical pathways.

Metabolomics data can be analyzed with a range of
statistical and machine-learning algorithms. These algo-
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rithms can be classified within two major classes: unsu-
pervised and supervised (Kell, 2004). They can be useful in
the identification of biomarkers (Sajda, 2006; Shin and
Markey, 2006). Unsupervised algorithms find patterns in
the data without any biases, and are typically driven by the
largest changes (variance). Supervised algorithms require
that samples be labeled in groups a priori, and they uncover
the features (variables) that best discriminate between those
groups. Examples of unsupervised methods that have been
routinely used in analyzing molecular fingerprinting data
include principal component analysis (PCA) and self-
organizing maps (Patterson et al, 2008).

METABOLIC CHANGES IN CNS DISORDERS:
RATIONALE FOR METABOLOMICS
APPROACH

Over the last half a century, neurochemists have identified a
series of molecules in the brain which carry important
messenger functions such as DA, epinephrine, norepinephr-
ine (NE), serotonin, acetylcholine (Ach), y-amino butyric
acid (GABA), substance P, bradykinin, and many more. The
identification of these molecules required technically
challenging experiments and once these compounds were
identified, research shifted to understanding their mechan-
isms of regulation, synthesis and release, and the pathways
that gave rise to them. Notably, however, these are
molecules that are primarily thought by most, even today,
as individual molecules. The next stage—the consideration
of pathways—entered the picture as people asked how
molecules were made, and what the limiting factors in their
synthesis were. Today, metabolomics provides new and
powerful tools to study hundreds of these key molecules
simultaneously and quantitatively (Kristal et al, 2007a,b).
We can now interrogate almost to entirety metabolites
within key neurotransmitter pathways such as DA and
serotonin enabling us to move to a far more detailed
analysis of implications of these pathways in CNS disorders
and for mapping more clearly mechanism of action of drugs
that target these pathways.

Abnormalities in several metabolic pathways have been
identified in neuropsychiatric disorders. There is increasing
evidence linking mitochondrial dysfunction, as well as
metabolic abnormalities to neurodegenerative diseases
(Thomas and Beal, 2007; Lin and Beal, 2006). Mitochondria
are critical regulators of cell death, a key feature of
neurodegeneration. There may be a variety of factors, which
link mitochondria to neurodegeneration in the various
neurodegenerative diseases. For instance, in HD there is
recent evidence that suggests that the coactivator PGCl-a, a
key regulator of mitochondria biogenesis and respiration, is
downregulated. This appears to be the case both in patients,
as well as several animal models of HD. In PD the autosomal
recessive genes Parkin, DJ1, and PINKI are all linked to
either oxidative stress or mitochondrial dysfunction. In ALS
there is strong evidence that mutant superoxide dismutase
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directly interacts with the outer mitochondrial membrane, as
well as the intermembrane space and matrix. A number of
therapies that target basic mitochondrial processes such as
energy metabolism and free radical generation are under
development.

In psychiatric diseases many metabolic changes have
been identified and linked to disease pathogenesis. Changes
in neurotransmitter pathways such as DA and serotonin
seem to be important in disease pathogenesis and response
to therapy.

In schizophrenia impairments in neurotransmitter, signal
transduction, antioxidant system, membrane composition,
and immune functions have been noted among several
other changes (Mahadik and Yao, 2006). There is sufficient
evidence to suggest that aberrant neurotransmission might
play a role in the pathogenesis of schizophrenia. In
particular, aberrant dopaminergic, serotonergic, and gluta-
matergic systems have been noted (Miyamoto et al, 2003).
Some data also exist that support the involvement of
histamine, and Ach neurotransmitter systems (Feuerstein,
2008). It is wunclear, however, to what extent these
neurochemical findings reflect primary rather than second-
ary pathology, compensatory mechanisms, or environmen-
tal influences, and it is not clear how these pathways
interact in schizophrenia pathogenesis. Evidence exists that
phospholipids which play a critical role in the structure and
function of membranes are impaired in schizophrenia
(Horrobin, 1998; Berger et al, 2002; Skosnik and Yao,
2003; Mahadik and Yao, 2006). Lipids and their constituent
fatty acids which provide scaffolding for many key
functional systems, including neurotransmitter receptor
binding, signal transduction, transmembrane ion channels,
prostanoid synthesis, and mitochondrial electron-transport
systems could contribute to pathogenesis in schizophrenia
(Rotrosen and Wolkin, 1987; Lieberman and Koreen, 1993).

In bipolar disorder (BD) perturbations in neurotransmit-
ters systems including Ach (Janowsky et al, 1972), GABA
(Brambilla et al, 2003), norepinephrine (NE) (Schildkraut,
1974), DA (Goodwin and Sack, 1974), glutamate (Glu)
(Kugaya and Sanacora, 2005), and serotonin (5HT)
(Mahmood and Silverstone, 2001; Sobczak et al, 2002) have
been identified. Abnormalities in lipids and increased
inflammation and immune activation may also contribute
to the pathogenesis of mood disorders, in part by
modulating the metabolism of NT systems (Wichers et al,
2005). It is not well understood which biochemical pathways
are regulated during the shift from the manic to the
depressed states.

In major depressive disorders (MDD) multiple neurotrans-
mitter systems are thought to be deregulated and much
attention has been given to the role of impairment in central
monoaminergic function. Given that SSRIs are commonly
used for the treatment of MDD, serotonin (5HT) abnormities
have been traditionally linked to MDD’ pathogenesis (Delgado
and Moreno, 2000). Not only serotonergic, but also
noradrenergic systems are likely to be involved in antide-
pressant action, and specific impairments in these systems

Neuropsychopharmacology REVIEWS

REVIEW

may also play a role in disease pathogenesis (Delgado and
Moreno, 2000). The GABAergic neurotransmitter system has
become increasingly implicated in the neurobiology of mood
disorders (Brambilla et al, 2003; Sanacora and Saricicek,
2007). GABAergic involvement in the pathophysiology and
treatment of mood disorders is supported by several lines of
evidence spanning from animal studies showing stress-related
changes in GABAergic function to the demonstration of
GABAergic abnormalities and genetic associations in de-
pressed patients (Brambilla et al, 2003; Sanacora and
Saricicek, 2007). Specifically, the association of lower GABA
levels with depression is a consistent finding (Petty and
Schlesser, 1981). Indeed, reduced levels have been consistently
reported in plasma (Petty and Schlesser, 1981), CSF (Gerner
et al, 1984; Kasa et al, 1982), and brain (Bhagwagar et al, 2007;
Hasler et al, 2007; Sanacora and Saricicek, 2007) of
individuals diagnosed with depression. Likewise, GABA
agonists and antagonists have the ability to modulate
behavioral models of depression in rodents, existing anti-
depressant medications have GABAergic effects and there is
some evidence for a clinical antidepressant efficacy associated
with GABAergic drugs. Glutamatergic abnormalities in MDD
patients including decreased CSF Glu and glycine (Frye et al,
2007) but increased levels of GIn have been reported (Levine
et al, 2000). Furthermore, antidepressant and mood stabiliz-
ing medications have glutamatergic effects and Glu modulat-
ing agents in the treatment of depression.

APPLICATIONS OF METABOLOMICS IN THE
STUDY OF CNS DISEASES

It is clear that perturbations in a variety of metabolic and
signaling pathways could contribute to the pathogenesis of
CNS disorders. Metabolomics provides powerful tools to
map in greater detail these perturbations and their relation-
ship to disease pathogenesis and response to therapy.
Applications of metabolomics for the study of CNS diseases
includes: (1) added information about mechanisms of
disease; (2) identification of prognostic, diagnostic, and
surrogate markers for a disease state; (3) the ability to
subclassify disease based on metabolic profiles; (4) identi-
fication biomarkers for drug response phenotypes and for
development of metabolic side effects (pharmacometabo-
lomics); and (5) added tools in the process of drug
discovery and drug development.

Psychiatry and neurology have long posed unique
difficulties for the development of biomarkers because of
the lack of access to relevant tissues. Initial biomarkers
studies have relied on studies of platelet markers, spinal
fluid metabolites, tissue obtained at autopsy from suicide
victims or those who died of natural causes, as well as use of
imaging techniques ranging from EEG, CT, MRI, MRS, and
PET scans. All of these techniques have limitations
especially given that our disease classification systems have
also evolved and matured over the years. Although spinal
fluid studies of numerous metabolites have been conducted



REVIEW

in the study of CNS diseases, to date there exists no
standard ‘normative’ reference level for most of these
metabolites. This is because individual studies could
measure only a few metabolites at a time and measurements
are usually performed only in diseased individuals and
relatively few controls are studied. Thus, there is a wide
variation from study to study in the ‘normal’ values.
Ventricular CSF and lumber CSF metabolites are not
identical and it is not totally clear which correlates better
with brain biochemistry. The correlations between plasma
and CSF have also not been well established for many of
these metabolites. In addition, the high complexity of the
brain (compared to say the muscle or the heart) has made
the identification of reliable biomarkers much more
difficult. Thus, these issues argue for a systematic correla-
tive study of plasma and spinal fluid metabolites using a
technology such as metabolomics that can provide assess-
ment of global metabolite signatures. Further, the establish-
ment of ‘brain banks’ with rapid autopsy procedures at
many centers has now made available tissue samples that
can be analyzed in disorders such as Alzheimer’s, major
depression, schizophrenia, Lewy body dementia, fronto-
temporal dementia, and other conditions. Many psychiatric
clinical trials also routinely collect samples from well-
characterized patients before and after treatment with drugs
or placebo. It is of interest to note that metabolomics can
provide means to study variation in biochemical profiles
among patients and could result in more effective ways to
sub classify patients and provide well-defined intermediate
phenotype that can describe clinical phenotype being
observed by clinicians. This could have a significant impact
on clinical trials design and outcome as we can start to
evaluate how subpopulations of patients respond to therapy
and select drugs that are more effective for each grouping.
The metabolic signatures of antidepressants (SSRI class) are
being mapped in good and poor responders (Metabolomics
Network for Drug Response Phenotypes funded by NIH) to
obtain information that can lead to a deeper understanding
of pathways implicated in response and variation in
response to these therapies. Mapping of signatures asso-
ciated with response and of signatures associated with
development of metabolic adverse events can lead to
development of useful biomarkers that can help select the
right drug for each patients resulting in personalizing
therapy. Indeed, a new field is emerging which is called
Pharmacometabolomis (of Pharmacometabonomics) than
can compliment the field of pharmacogenomics.

Signatures of disease can also provide clues for drug
targets. For example if a particular signature is related to a
disorder then one could trace back potential targets in that
metabolic framework for drug development. In addition a
signature for a CNS disorder that suggests that certain
metabolites are low or missing, may suggest potential
ways of replacing or altering production of these metabo-
lites as modes of treatment in line with replacement of DA
in PD.
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EARLY FINDINGS FROM METABOLOMICS
STUDIES OF CNS DISORDERS

We have started to explore metabolic perturbations in
neurodegenerative and psychiatric diseases. We attempt to
understand unique and commonly perturbed pathways that
contribute to the death of neurons in degenerative diseases
such as ALS, PD, and HD. In psychiatric disorders such as
depression, bipolar and schizophrenia we attempt to
identify biomarkers for disease, disease progression, and
response to therapy and define pathways implicated. Below
we summarize initial findings from metabolomics studies of
such CNS disorders.

METABOLOMIC ANALYSIS OF
NEURODEGENERATIVE DISEASES

Motor Neuron Disease

MNDs are a heterogeneous group of rare disorders
that affect motor neurons and cause diverse signs and
symptoms. These are fatal diseases that are poorly under-
stood and treatments are mostly nonexistent or supportive
at best.

ALS affects both lower and upper motor neurons (Row-
land and Shneider, 2001). Whether ALS is a single disease
entity or a syndrome caused by different conditions remains
unknown. In addition, it is not clear whether MNDs are
closely related but distinct disorders or whether they
represent different points on the spectrum of a single
disease.

We hypothesized that diseases such as ALS might
produce characteristic perturbations of the metabolome.
We used HPLC followed by electrochemical detection to
profile plasma from 28 patients with MND and 30 healthy
controls (Rozen et al, 2005). Using multivariate regression
techniques we were able to distinguish ALS patients from
controls (Figures 2 and 3) and also separate ALS patients on
Riluzole or off Riluzole. Please note that in Figure 2 left
panel is control subjects whereas central panels and right
panel are patients. Each column is a subject and each raw is
a metabolite. Red are metabolites that are upregulated and
blue downregulated. A sub-signature for patients with
LMND and slow disease progression has been identified
(Figure 2, right panel of four patients). In addition, a
signature for the drug riluzole (used to treat patients with
ALS) that includes endogenously induced metabolites has
been defined (Figure 2, panel labeled MND and riluzole). In
a subsequent study of 19 subjects with MND who were not
taking riluzole and 33 healthy control subjects, six
compounds were significantly elevated in MND, whereas
the number of compounds with decreased concentration
was similar to the initial study (Rozen et al, 2005).

In both data sets, it was possible to separate MND
patients from controls using multivariate regression tech-
niques. These data suggested that metabolomic studies can
be used to detect signatures for some CNS disorders
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Figure 2.

higher in MND patients than in controls. Each row represents a metabolite, each column represents a healthy control or a patient, and each colored
square represents the relative concentration of a single metabolite in a single person. Compounds are sorted by decreasing association with MND.
Significant association measures at P = 0.05 are indicated by black dots at the right. The association measures for the actual data are indicated by red

dots. The metabolites that are high in MND define three subgroups. These consist of patients not taking riluzole, patients taking riluzole, and four patients
with a distinctive signature (indicated by an asterisk). Three of these patients had LMN disease. Figure presented with permission from Metabolomics

Journal. Rozen et al, 2005.
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molecules in ALS and other forms of MND might provide
insight into aberrant biochemical pathways that could lead
to diagnostic markers and targets for drug design. A
program funded by the ALS Association (collaboration
between MGH, Metabolon Inc. and network of academic
institutions) has been initiated to collect samples from
MND patients nationally to better dissect MNDs using a
variety of metabolomics platforms including LC-MS and
gas chromatography-mass spectrometry (GC-MS). We are
defining metabolic signatures for UMNDs, LMNDs, and
ALS to determine the relatedness of these diseases at the
metabolic level and to define biochemical markers for

disease and progression. Although clinicians can classify
these diseases in a rough way, we believe that metabolomics

can provide a more objective classification.

Metabolomic Analysis of Parkinson’s Disease
A recent study was conducted by Bogdanov et al (2008) to
look for biomarkers in plasma useful for the diagnosis of

PD. Metabolomic profiling using high-performance liquid
chromatography coupled with electrochemical coulometric

Figure 3. Partial least squares discriminant analysis (PLS-DA) distinguished
subgroups of motor neuron disease (MND). Models using projections into

three dimensions provided statistically significant separations between
by permutation test—random assignment of

subgroups (P <0.01

samples to subgroups). Red are controls; purple are MND patients on
riluzole; blue are MND patients off riluzole and black are atypical MND
patients. Figure presented with permission from Metabolomics Journal.

Rozen et al, 2005.
peripherally, could identify sub-groupings within a disease
state, and that they can also detect drug exposure

signatures. Elucidation of the structures of signature
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array detection was used to evaluate 25 controls and 66 PD
patients. Initial analysis of the metabolomic profiles from
plasma demonstrated a clear differentiation between PD
patients and control subjects (P<0.01 by permutation test).
A partial least squares discriminant analysis (PLS-DA)
scores plot based on complete digital maps is shown in
Figure 4. Both unmedicated PD patients and the patients on
different types of antiparkinsonian medication (Sinemet,
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Figure 4. Partial least squares discriminant analysis (PLS-DA) scores
plot showing a significant separation (P<0.01 by permutation test—ran-
dom assignment of samples to different groups) between control subjects
(h=25) and all Parkinson’s disease (PD) patients (medicated and
unmedicated, n=66) using complete digital maps. Figure presented
with permission from Brain. Bogdanov et al, 2008.

DA receptor agonists, and combination of both Sinemet and
the agonists) were included in the initial analysis. To
evaluate the possibility that the observed separation
between the patients and controls is due to medications
that patients are on and not due to disease state plasma
from 15 unmedicated PD patients were profiled and
compared to profiles of 25 control subjects. A PLS-DA
scores plot based on the analysis of complete digital maps
for unmedicated PD patients and control subjects showed a
complete and significant separation of these two groups
(P<0.01 by permutation test; Figure 5). The metabolites 8-
OHdG and glutathione were significantly increased in PD
patients whereas the level of uric acid was significantly
reduced. Both glutathione and uric acid are well-known
antioxidants. Higher uric acid levels lower risk for PD and
slow the progression of the illness (de Lau et al, 2005;
Ascherio et al, 2006). Glutathione levels are reduced in the
substantia nigra of PD postmortem brain tissue. Increased
oxidized glutathione was found in plasma of PD patients
(Younes-Mhenni et al, 2007). Changes in levels and ratio of
oxidized to reduced glutathione probably reflect a response
to oxidative damage.

It is of interest to note that drugs used to treat PD such as
Sinemet, DA receptor agonists, and combination of both
Sinemet and the agonists do induce partial reversal of
metabolic profiles in PD patients (Bogdanov et al, 2008)
where they become more similar to controls. Few patients’
metabolic profiles did not revert and it is of interest to try to
correlate in the future reversal of metabolic profiles with
reversal of clinical symptoms.

This PD study demonstrates the promise of metabolomics
in the development of biomarkers for PD. Diagnostic
markers could have great utility in accelerating clinical
trials and might enable sub-stratification of patients and
identification of homogenous population of PD subjects not
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Figure 5. Partial least squares discriminant analysis (PLS-DA) scores

plot showing a significant separation (P<0.01 by permutation test)
between control subjects (n =25) and unmedicated PD patients (n = 15)
using complete digital maps. Figure presented with permission from
Brain. Bogdanov et al, 2008.

contaminated by other Parkinsonian syndromes. A disease
progression marker if identified and validated in long-
itudinal studies could serve as a surrogate endpoint, which
might be more quantitative than clinical scales. Lastly, if
one could identify early biochemical changes and signatures
that are unique to patients at the earliest stages of illness, or
even pre-symptomatically it would be of great importance.
One could then screen first-degree relatives, patients with
hyposmia and patients carrying genetic risk factors. A
number of other manifestations of systemic illness may
increase risk for PD. If these patients can be identified early
one could carry out primary prevention trials.

Metabolomics in the Study of Huntington’s
Disease

HD is a devastating autosomal-dominant neurodegenerative
condition that manifests with movement disorder, beha-
vioral disturbance, and cognitive deterioration. Although it
can present at any age, the median age of onset is 40 years,
and death typically follows some 15-20 years after symptom
onset. The HD mutation is a (CAG), trinucleotide repeat
expansion at the 5 end of the transcript encoding HD. The
(CAG),, repeats are translated into a polyglutamine tract.
Disease is caused by >35 CAG repeats and the age at onset
correlates inversely with CAG repeat number. Considerable
progress has been made with modeling Huntington’s
pathogenesis in cell and animal models. The development
of biomarkers that better sub classify patients or that
correlate with disease and disease progression could
provide very valuable tools as clinical trials are costly and
time consuming due to the slow disease course, insidious
onset and patient-to-patient variability. The validation of
animal models which are used to select candidate therapies
and an evaluation of their relevance to human disease is of
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great importance as they could yield models that are more
effective in predicting therapeutic outcome in patients.

In a study conducted by Underwood et al (2006)
metabolic profiling of human HD patients and a transgenic
mouse model for HD by gas chromatography-time-of-
flight-mass spectrometry (GC-TOF-MS) revealed clear
differences in metabolic profiles. This trend was seen in
both transgenic mice and wild-type littermates, and human
patients compared to control subjects. The metabolic
signatures in mice and humans are indicative of a change
to a procatabolic phenotype in early HD preceding
symptom onset, with changes in various markers of fatty
acid breakdown (including glycerol and malonate) and also
in certain aliphatic amino acids. The data raise the prospect
of a robust molecular definition of progression of HD before
symptom onset, and if validated in a genuinely prospective
fashion these biomarker trajectories could facilitate the
development of useful therapies for this disease as well as
biomarkers for disease and its progression.

Metabolomic Analysis of a Mouse Model of
Batten Disease

Neuronal ceroid lipofuscinoses (NCLs) are a series of
autosomal recessive diseases that collectively constitute the
most common cause of childhood neurodegeneration with
an incidence of 1 in 12500 (Goebel and Sharp, 1998;
Banerjee et al, 1992). The disorders are typified by their
progressive nature with symptoms including visual dis-
turbances, psychomotor deterioration, mental impairment,
worsening seizures, blindness, and, ultimately, premature
death (Gardiner, 2002; Hofmann et al, 2002; Mitchison et al,
2004; Mitchison and Mole, 2001; Wisniewski et al, 2001).
Although six of the causative genes have been characterized,
the underlying disease pathogenesis for this family of
disorders is unknown. The Cin3 gene has been identified as
responsible for the juvenile NCL (Batten disease) and an
animal model has been generated for this disease. Using a
metabolomics approach based on high resolution 'H NMR
spectroscopy of the cortex, cerebellum, and remaining
regions of the brain in conjunction with statistical pattern
recognition, Pears et al (2005) evaluated metabolic deficits
in Cln3 null mutant mice aged 1-6 months. They defined
increased Glu concentration and a decrease in GABA
concentration in aqueous extracts from the three regions
of the brain. These changes are consistent with the reported
altered expression of genes involved in Glu metabolism in
older mice and imply a change in neurotransmitter cycling
between Glu/glutamine and the production of GABA.
Further variations in myo-inositol, creatine, and N-acetyl-
aspartate were also identified. These metabolic changes
were distinct from the normal aging/developmental
process. Together, these changes represent the first
documented presymptomatic symptoms of the CIn3 mouse
at 1 month of age and demonstrate the versatility of 'H
NMR spectroscopy as a tool for phenotyping mouse models
of disease.
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METABOLOMIC ANALYSIS IN PSYCHIATRIC
DISORDERS

We have been using random and targeted metabolomics
approaches for the study of psychiatric disorders. We are
testing existing hypothesis around the impairment of neuro-
transmitter pathways such as DA and serotonin and lipid
pathways and we are also generating new hypothesis about
pathways that might be implicated in disease and disease
progression. Below we provide early findings for such studies.

Metabolic Signatures in Depression

Given the body of evidence suggesting that abnormalities in
the metabolome do exist both centrally and in the periphery
a recently published metabolomics study was conducted in
plasma as a first step towards mapping biomarkers for
depression. Metabolomic analysis of blood plasma was
performed on 9 depressed, 11 remitted, and 10 never-
depressed older adults (Paige et al, 2007). Hundreds of
metabolites were measured using GC-MS. Metabolite
identification was based on a combination of chromato-
graphic properties and mass spectra. A library of 800
commercially available human metabolite standards (Me-
tabolon Inc.) has been assembled and analyzed on an MS
platform that helped in compound identification.

Concentrations of each metabolite were normalized to mean
scaled values of two recovery standards that represent
hydrophobic and hydrophilic compounds. Univariate t-tests
(Welch’s  two-sample t-tests) were performed for each
metabolite to determine metabolic differences between healthy
controls, and individuals who are depressed or in remission.
False discovery rate (FDR) was accounted for and the multiple
testing and g-value were estimated FDR for every possible list
of ‘significant’ metabolites. Metabolites that were altered in
currently depressed patients when compared with controls
included several fatty acids, glycerol, and GABA. Analyses
comparing concentrations in remitted and currently depressed
patients revealed a pattern of metabolite alterations similar to
the control vs currently depressed analyses. One difference
observed in the remitted patients relative to the depressed
patients was elevation of the concentration of the ketone 3-
hydroxybutanoic acid (Figure 6).

These preliminary results will need to be examined and
validated in larger longitudinal cohorts. However, these
findings suggest that the depressed state may be associated
with alterations in the metabolism of lipids and neuro-
transmitters, and that treatment with antidepressants
adjusts some of the aberrant pathways in disease so that
the patients in remission have a metabolic profile more
similar to controls than to the depressed population. An
evaluation of such changes in CSF samples is needed to
establish how closely these findings are to central changes.

Metabolic Signatures in Schizophrenia and Its
Treatment

Several metabolomics studies have recently been conducted
in an attempt to better define pathways modified in



REVIEW

GABA

_5 0.03 1
£ 0.026 - I
@

0.022 4
§ =
o 0.018 +
T 0.014 -
3 o 1 l
C 0.01 A

Control  Depression Repression
Glycerol
c
L2 0454
£ o4f [
g 0.35 -
§ 0.3 A
o 0.25 ~
2 02- J -
©
o 0.015 -
T 0.01
Control  Depression Repression

Metabolomics of CNS disorders
R Kaddurah-Daouk and KRR Krishnan

Stearate
< 0.05 ~ 5]
£ 0.45
g 04 1
& 0.35
2 0.3 -
80254 T
222 ] %l
= 0.15 A
©
%1 T E3
0.05 - . : -
Control  Depression Repression
3-Hydroxybutanoic acid
.5 0.05 - E
® 0.25 - O
& 0.35 -
(C)
S 0.15 - T E
(8]
2 011 [
©
< 0.05 -
[5)
O
o 0 -

T T T

Control  Depression Repression

Figure 6. Metabolites significantly different in the depressed state when compared to remitted state or healthy nondepressed controls. Figure

presented with permission from Int J Geriatric Psychiatry. Paige et al, 2007.

schizophrenia and its treatment (Holmes et al, 2006;
Kaddurah-Daouk et al, 2007; Tkachev et al, 2007; Tsang
et al, 2006). In one study we used a specialized lipidomics
platform and measured more than 300 polar and nonpolar
lipid metabolites (structural and energetic lipids) across 7
lipid classes to evaluate global lipid changes in schizo-
phrenia before and after treatment with three commonly
prescribed atypical antipsychotics, olanzapine, risperidone,
and aripiprazole (Kaddurah-Daouk et al, 2007).

Lipidomics is a branch of metabolomics that specifically
focuses on comprehensive assessment of lipid biochemistry
(German et al, 2007; Watson, 2006; Wiest and Watkins,
2007). In this particular study, lipid profiles were obtained
for 50 patients with schizophrenia before and after 2-3
weeks of treatment with olanzapine, risperidone, or
aripiprazole. Data are presented in heat maps where column
headers indicate fatty acid metabolites as they appear in
each distinct lipid class (rows). Metabolites that are
upregulated are shown in red whereas those that are
downregulated are shown in green. Figure 7a shows
differences in individual lipid metabolites in the plasma of
patients with schizophrenia as compared to controls
whereas Figure 7b shows effect of three drugs olanzapine,
risperidone, and aripiprazole. Figure 7c shows the most
significantly modified lipid metabolites in plasma of
patients treated with olanzapine and highlights which of
these metabolites are also modified upon treatment with
risperidone or aripiprazole.

At baseline, and before drug treatment, major changes
were noted in two phospholipids classes, phosphotidyletha-
nolamine (PE) and phosphotidylcholine (PC), suggesting
that phospholipids that are important in proper membrane

structure and function seem to be impaired in patients with
schizophrenia (Figure 7; Kaddurah-Daouk et al, 2007). This
confirmed previous observations but establishes a far more
detailed biochemical map for sites of perturbations. Some of
the biochemical perturbations were seen within the »-3 and
-6 subclasses in PE and PC. In addition shifts between
saturated and ployunsaturated fatty acids were noted
(Figure 7; Kaddurah-Daouk et al, 2007).

The effects of three antipsychotic drugs, olanzapine,
risperidone, and aripiprazole, on lipid biochemical path-
ways were then evaluated by comparing metabolic profiles
at baseline to post-treatment (Kaddurah-Daouk et al, 2007).
It was of interest that each of the three drugs studied had a
unique signature suggesting that although these drugs share
some effects, they also have many effects that are unique for
each. PE concentrations that were suppressed at baseline in
patients with schizophrenia were elevated after treatment
with all three drugs. However, olanzapine and risperidone
affected a much broader range of lipid classes than did
aripiprazole, with approximately 50 lipids that were
increased after exposure to these drugs, but not after
aripiprazole therapy (Figure 7). On balance, aripiprazole
induced minimal changes in the lipidome (Figure 7),
consistent with its limited metabolic side effects. There
were also increased concentrations of triacylglycerols and
decreased free fatty acid concentrations after both olanza-
pine and risperidone, but not after aripiprazole therapy
(Figure 7; Kaddurah-Daouk et al, 2007). All of these changes
suggest peripheral effects that might be related to the
metabolic side effects that have been reported for this class
of drugs and highlights lipases in the liver as possibly
targets for these drugs. Finally, a PCA identified baseline
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lipid alterations that seemed to correlate with acute  in which global lipid changes would be correlated with
treatment response (Kaddurah-Daouk et al, 2007). clinical outcomes might yield biomarkers related to

Collectively, these results raised the possibility that a  response and development of side effects. This study of
more definitive long-term randomized study of these drugs  atypical antipsychotic drugs illustrates the way in which
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metabolomics might contribute to our understanding of
drug response phenotypes and how it provides tools to
analyze pathways implicated in variation to response for
this class of drugs. In addition it illustrates how metabo-
lomics could be a very valuable tool for biomarker
discovery. Studies carried by our newly established Schizo-
phrenia Metabolomics Network are generating data about
global changes in neurotransmitter pathways, purine path-
ways, one carbon metabolism-related pathways, intermedi-
ary metabolic pathways, and other pathways and will
provide a far better chance at defining a truly comprehen-
sive signature for schizophrenia.

Additional metabolomics studies in schizophrenia in-
clude a (1)H NMR spectroscopy-based metabonomic
analysis plasma where samples from 21 pairs of mono-
zygotic twins discordant for schizophrenia and 8 pairs of
age-matched healthy twins demonstrated alterations in lipid
profiles of both affected and unaffected schizophrenia twins
(Tsang et al, 2006). In another study (1)H NMR profiling of
CSF samples from drug-naive patients with first-onset
schizophrenia, suggested alterations in glucose regulation
an abnormality that seems to get corrected by early
treatment with antipsychotics (Holmes et al, 2006). Finally,
an interesting metabolomic study on post-mortem tissue
provides support to the notion that abnormalities at the
level of glutamatergic neurotransmission and myelin
synthesis may be important in schizophrenia (Tkachev
et al, 2007).

Metabolic Signatures in Bipolar Disease

Bipolar affective disorder (BD) is a severe and debilitating
psychiatric condition characterized by the alternating mood
states of mania and depression. The pathophysiology of the
disorder and the mechanism of action of therapies used for
its treatment remain poorly understood. Lan et al, 2008
used "H NMR spectroscopy-based metabonomic analysis to
identify molecular changes in post-mortem brain tissue
(dorsolateral prefrontal cortex) of patients with a history of
BD. In an animal model they also evaluated signatures of
lithium and valproate two drugs used to treat BD. Several
metabolites were found to be concordantly altered in both
the animal and human tissues. Glu levels were increased in
post-mortem bipolar brain, whereas the Glu/glutamine ratio
was decreased following valproate treatment, and GABA
levels were increased after lithium treatment, suggesting
that the balance of excitatory/inhibitory neurotransmission
is central to the disorder.

In another study and using GC-TOF-MS we measured
246 metabolite signals in plasma of patients with BD pre
and post-treatment with lithium. Using 89 metabolites
identified with chemical structures we were able to achieve
clear separation between pre- and post-treatment samples
using PCA and PLS plots (RKD). Treatment was associated
with a significant change in levels of 20 metabolites. Some of
these metabolites included molecules belonging to pathways
postulated to be responsible for lithium’s therapeutic effects
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and some were previously unidentified (unpublished data).
We are trying to define which sets of metabolites at baseline
correlate with positive therapeutic outcome.

Collectively, data demonstrate the high potential of
metabolomics for the identification of biomarkers and
metabolic signatures of treatment response. Replication
studies are underway to validate our findings.

Metabolomics in Addictive Disorder

Many experiments are underway to evaluate signatures in
addicts who use cocaine or opioids. Early findings suggest
that neurotransmitter pathways, purine pathways, and
pathway implicated in oxidative stress all seem to be
affected by these addictive substances. Further validation of
these findings could provide new insights about addiction
mechanisms and ways to try to intervene with that.

FUTURE DIRECTIONS AND CLINICAL
IMPLICATIONS

The study of metabolism at the global or ‘-omics’ level,
referred to as metabolomics, is a new but rapidly growing
field that has the potential to impact our understanding of
molecular mechanisms of disease. Disease states like
schizophrenia disrupt metabolism and result in metabolic
signatures that are long lasting and that can be defined
using complimentary metabolomics platforms. A deeper
understanding of global perturbations in biochemical
pathways in complex diseases such as schizophrenia,
depression, Parkinson’s, and Alzheimer’s disease and upon
treatment with drugs could provide valuable insights about
mechanisms of disease, drug effects, and variation in drug
response and provide needed prognostic, diagnostic and
surrogate biomarkers. In addition, metabolomics could
provide biochemical labels to the diverse clinical manifesta-
tions of CNS diseases leading to sub-classification of disease
based on different etiologies and biochemical perturbations.
This could stream line clinical trials and improve outcomes.
It should be noted that research at this stage represents first
steps towards the development of a metabolic signature as
biomarkers for disease or its treatment. We are still learning
how to deal with confounding factors and our sample sizes
so far are relatively small. Proper matching of patients and
controls for age gender ethnic background and many other
factors should be considered carefully. Close monitoring of
diet and exercise and possible confounding effects of other
medications and disease states have to be considered.
Ideally more than one site should be used for recruitment of
patients and controls. Longitudinal studies are needed to
confirm and expand on these initial findings. Replication
studies and blinded studies are needed to validate markers
identified. Connecting central and peripheral changes in
CNS disorders is key towards defining if and how
biochemical changes in plasma are related to changes in
the brain. Combining metabolomics with imaging ap-
proaches and other omics approaches might be powerful
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ways to achieve these goals. Metabolomics has the potential
to enable mapping of early biochemical changes in disease
and hence provide an opportunity to develop predictive
biomarkers that can trigger earlier interventions. The
inclusion of metabolomics in all steps of drug discovery
and drug development we believe will become a routine as
biochemistry is basic to understanding how drugs work and
what their safety and efficacy profiles are.
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