Positron and Single Photon Emission Tomography

Principles and Applications in Psychopharmacology

Robert T. Malison, Marc Laruelle, and Robert B. Innis
Department of Psychiatry
Yale University School of Medicine
West Haven Veteran Affairs Medical Center
West Haven, Connecticut 06516.


REFERENCES

1. Andreasen NC, Carson R, Diksic M, et al. Workshop on schizophrenia, PET, and dopamine D2 receptors in the human neostriatum. Schizophrenia Bull 1988;14:471–484.

2. Aquilonius SM, Bergstrom K, Eckernas SA, et al. In vivo evaluation of striatal dopamine reuptake sites using 11C-nomifensine and positron emission tomography. Acta Neurol Scand 1987;76:283–287.

3. Arnett CD, Fowler JS, MacGregor RR, et al. Turnover of brain monoamine oxidase measured in vivo by positron emission tomography using L-[11C]deprenyl. J Neurochem 1987;49:522–527.

4. Bench CJ, Price GW, Lammerstma AA, et al. Measurement of human cerebral monoamine oxidase type B (MAO-B) activity with positron emission tomography (PET): a dose ranging study with the reversible inhibitor Ro 19-6327. Eur J Clin Pharmacol 1991; 40:169–173.

5. Brooks RA, DiChiro G. Theory of image reconstruction in computed tomography. Radiology 1975;117:561.

6. Budinger TF. Physical attributes of single-photon tomography. J Nucl Med 1980;21:579–592.

7. Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH. Quantitative potentials of dynamic emission computed tomography. J Nucl Med 1978;19:309–315.

8. Budinger TF, Derenzo SE, Gullberg GT, Greenberg WL, Huesman RH. Emission computer assisted tomography with single-photon and positron annihilation photon emitters. J Comput Assist Tomogr 1977;1:131–145.

9. Calne DB. PET after MPTP: observations relating to the cause of Parkinson's disease. Nature 1985;317:246–248.

10. Carson RE. Parameter estimation in positron emission tomography. In: Phelps ME, Mazziotta JC, Schelbert HR, eds. Positron emission tomography. Principles and applications for the brain and the heart. New York: Raven Press; 1986:347–390.

11. Carson RE. The development and application of mathematical models in nuclear medicine. J Nucl Med 1991;32:2206–2208.

12. Carson RE. Precision and accuracy considerations of physiological quantification in PET. J Cereb Blood Flow Metab 1991;11:A45–A50.

13. Carson RE, Channing MA, Blasberg RG, et al. Comparison of bolus and infusion methods for receptor quantification: application to [18F]-cyclfoxy and positron emission tomography. J Cereb Blood Flow Metab 1992;13:24–42.

14. Chang LT. A method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638.

15. Coffman JA. Computed tomography. In: Andreasen NC, eds. Brain imaging: applications in psychiatry. Washington, DC: American Psychiatric Press; 1989:1–66.

16. Dannals RF, Ravert HT, Wilson AA. Radiochemistry of tracers for neurotransmitter receptor studies. In: Frost JJ, Wagner HN, eds. Quantitative imaging: neuroreceptors, neurotransmitters, and enzymes. New York: Raven Press; 1990:19–35.

17. Devous MD. Imaging brain function by single-photon emission computer tomography. In: Andreasen NC, eds. Brain imaging: applications in psychiatry. Washington, DC: American Psychiatric Press; 1989:147–234.

18. Dewey SL, Logan J, Wolf AP, et al. Amphetamine induced decreases in (18F)-N-methylspiroperidol binding in the baboon brain using positron emission tomography (PET). Synapse 1991;7:324–327.

19. Farde L, Hall H, Ehrin E, Sedvall G. Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science 1986;231:258–261.

20. Farde L, Nordstrom AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. PET analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classic neuroleptics and clozapine—relationship to extrapyramidal side effects. Arch Gen Psychiatry 1992;49:538–544.

21. Farde L, Wiesel FA, Stone-Elander S, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. Arch Gen Psychiatry 1990;47:213–219.

22. Fowler JS, MacGregor RR, Wolf AP, et al. Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators with PET. Science 1987;235:481–485.

23. Fowler JS, Volkow ND, Wolf AP, et al. Mapping cocaine binding sites in human and baboon in vivo. Synapse 1989;4:371–377.

24. Frey KA, Hichwa RD, Ehrenkaufer RLE, Agranoff BW. Quantitative in vivo receptor binding III: tracer kinetic modeling of muscarinic cholinergic receptor binding. Proc Natl Acad Sci USA 1987;82:6711–6715.

25. Frost JJ, Douglass KH, Mayberg HS, et al. Multicompartimental analysis of 11C-carfentanil binding to opiate receptors in human measured by positron emission tomography. J Cereb Blood Flow Metab 1989;9:398–409.

26. Frost JJ, Rossier AM, Reich S, et al. PET imaging of dopamine reuptake sites in Parkinson's disease by C-11-WIN 35,428 and PET. J Nucl Med 1993;34:31P(abstr.).

27. Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature 1983;305:137–138.

28. Garnett ES, Firnau G, Nahmias C, Chirakal R. Striatal dopamine metabolism in living monkeys examined in positron emission tomography. Brain Res 1983;280:169–171.

29. Gjedde A. High- and low-affinity transport of D-glucose from blood to brain. J Neurochem 1981;36:1463–1471.

30. Gjedde A, Wong DF. Modeling neuroreceptor binding of radioligands in vivo. In: Frost JJ, Wagner HN Jr, eds. Quantitative imaging: neuroreceptors, neurotransmitters, and enzymes. New York: Raven Press; 1990:51–79.

31. Hoffman EJ, Huang SC, Phelps ME. Quantitation in positron emission computed tomography: 1. Effect of object size. J Comput Assist Tomogr 1979;3:299–308.

32. Hoffman EJ, Huang SC, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 4. Effect of accidental coincidences. J Comput Assist Tomogr 1981;5:391–400.

33. Hoffman EJ, Phelps ME. Positron emission tomography: principles and quantitation. In: Phelps M, Mazziotta J, Schelbert H, eds. Positron emission tomography and autoradiography: principles and applications for the brain and heart. New York: Raven Press; 1986: 237–286.

34. Huang SC, Bahn MM, Barrio JR, et al. A double-injection technique for in vivo measurement of dopamine D2-receptor density in monkeys with 3-(2-[18F] Fluoroethyl)spiperone and dynamic positron emission tomography. J Cereb Blood Flow Metab 1989;9:850–858.

35. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 2. Effects of inaccurate attenuation correction. J Comput Assist Tomogr 1979;3:804–814.

36. Huang SC, Hoffman EJ, Phelps ME, Kuhl DE. Quantitation in positron emission computed tomography: 3. Effect of sampling. J Comput Assist Tomogr 1980;4:819–826.

37. Innis RB, Malison RT, Al-Tikriti M, et al. Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 1992;10:177–184.

38. Innis RB, Seibyl JP, Wallace E, et al. SPECT imaging demonstrates loss of striatal dopamine transporters in Parkinson's disease. J Nucl Med 1993;34:31P (abst.)

39. Jaszczak RJ. SPECT: state-of-the-art scanners and reconstruction strategies. In: Diksic M, Reba RC, eds. Radiopharmaceuticals and brain pathology studied with PET and SPECT. Boca Raton: CRC Press; 1991:93–118.

40. Jenner P, Marsden CD. MPTP-induced parkinsonism as an experimental model of Parkinson's disease. In: Jankovic J, Tolosa E, eds. Parkinson's disease and movement disorders. Baltimore: Urban and Schwarzenberg; 1988:37–48.

41. Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion in the rat. Proc Natl Acad Sci USA 1985;82:6010–6013.

42. Kessler RM, Ansari MS, dePaulis T, et al. High affinity dopamine D2 receptor radioligands. 1. Regional rat brain distribution of iodinated benzamides. J Nucl Med 1991;32:1593–1600.

43. Kessler RM, Ellis JR, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984;8:514–522.

44. Kilbourn MR, Haka MS, Mulholland GK, Jewett DM, Kuhl DE. Synthesis of radiolabeled inhibitors of presynaptic monoamine uptake systems: [18F]GBR 13119 (DA), [11C]nisoxetine (NE), and [11C]fluoxetine (5-HT). J Lab Compd Radiopharm 1989;26:412.

45. Kung HF, Alavi A, Chang W, et al. In vivo SPECT imaging of CNS D-2 dopamine receptors: initial studies with iodine-123 IBZM in humans. J Nucl Med 1990;31:573–579.

46. Kung HF, Pan S, Kung MP, et al. In vitro and in vivo evaluation of [123I]IBZM: a potential CNS D-2 dopamine receptor imaging agent. J Nucl Med 1989;30:88–92.

47. Lammertsma AA, Bench CJ, Price GW, et al. Measurement of cerebral monoamine oxidase B activity using [11C]deprenyl and dynamic positron emission tomography. J Cereb Blood Flow Metab 1991;11:545–556.

48. Laruelle M, Abi-Dargham A, Rattner Z, et al. SPECT measurement of benzodiazepine receptor number and affinity in primate brain: a constant infusion paradigm with [123I]iomazenil. Eur J Pharmacol 1993;230:119–123.

49. Leenders KL, Salmon EP, Tyrrell P, et al. The nigrostriatal dopaminergic system assessed in vivo by PET in healthy volunteer subjects and patients with Parkinson's disease. Arch Neurol 1990; 47:1290–1298.

50. Links JM. Physics and instrumentation of positron emission tomography. In: Frost JJ, Wagner HN, eds. Quantitative imaging: neuroreceptors, neurotransmitters, and enzymes. New York: Raven Press; 1990:37–50.

51. Logan J, Fowler J, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab 1990;10:740–747.

52. Malison RT, Miller EG, Greene R, McCarthy G, Charney DS, Innis RB. Computer-assisted coregistration of multislice SPECT and MR brain images by fixed external fiducials. J Comput Assist Tomogr 1993;17(6):952–960.

53. Mazziotta JC, Phelps ME, Plummer D, Kuhl DE. Quantitation in positron emission computed tomography: 5. Physical-anatomical effects. J Comput Assist Tomogr 1981;5:734–743.

54. Mintun MA, Raichle ME, Kilbourn MR, Wooten GF, Welch MJ. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Ann Neurol 1984;15:217–227.

55. Muller-Gartner HW, Links JM, Prince JL, et al. Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. J Cereb Blood Flow Metab 1992;12:571–583.

56. Muller-Gartner HW, Wilson AA, Dannals RF, Wagner HN, Frost JJ. Imaging muscarinic choinergic receptors in human brain in vivo with SPECT, [123I]-iododexetimide, and [123I]-iodolevetimide. J Cereb Blood Flow Metab 1992;12:562–570.

57. Neumeyer JL, Wang S, Milius RA, et al. [123I]-2-b-Carbomethoxy-3-b-(4-iodophenyl)-tropane (b-CIT): high affinity SPECT radiotracer of monoamine reuptake sites in brain. J Med Chem 1991; 34:3144–3146.

58. Ogawa S, Lee TM, Nayak A, Glynn P. Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 1990;14:68–78.

59. Parker JA. Image reconstruction in radiology, Boca Raton: CRC Press; 1990.

60. Patlak CS, Balsberg RG, Fenstermacher JD. Graphical evaluation of blood to brain transfer constants from multiple time uptake data. J Cereb Blood Flow Metab 1983;3:1–7.

61. Pelizzari CA, Chen GTY, Spelbring DR, Weichselbaum RR, Chen CT. Accurate three-dimensional registration of CT, PET, and MR images of the brain. J Comput Assist Tomogr 1989;13:20–26.

62. Phelps ME, Hoffman EJ, Huang SC, Ter-Pogossian MM. Effect of positron range on spatial resolution. J Nucl Med 1975;16:649–652.

63. Ross SB. Synaptic concentration of dopamine in the mouse striatum in relationship to the kinetic properties of the dopamine receptors and uptake mechanism. J Neurochem 1991;56:22–29.

64. Ross SB, Jackson DM. Kinetic properties of the in vivo accumulation of 3H-(-)-N-n-propylnorapomorphine in mouse brain. Naunyn-Schmied Arch Pharmacol 1989;340:13–20.

65. Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L. Metabolic mapping of functional activity in the hypothalamoneurohypophysial system of the rat. Science 1979;205:723–725.

66. Seeman P, Guan H-C, Niznik HB. Endogenous dopamine lowers the dopamine D2 receptor density as measured by 3H-raclopride: implications for positron emission tomography of the human brain. Synapse 1989;3:96–97.

67. Seeman P, Niznik HB, Guan H-C. Elevation of dopamine D2 receptors in schizophrenia is underestimated by radioactive raclopride. Arch Gen Psychiat 1990;47:1170–1172.

68. Shaya EK, Scheffel U, Dannals RF, et al. In vivo imaging of dopamine reuptake sites in the primate brain using single photon emission computed tomography (SPECT) and iodine-123 labeled RTI-55. Synapse 1992;10:169–172.

69. Sorenson JA, Phelps ME. Physics in nuclear medicine, 2nd ed. Philadelphia: W.B. Saunders; 1987.

70. Wong DF, Gjedde A, Wagner HN. Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligand. J Cereb Blood Flow Metab 1986;6:137–146.

71. Wong DF, Gjedde A, Wagner HNJ, et al. Quantification of neuroreceptors in the living brain. II. Inhibition studies of receptor density and affinity. J Cereb Blood Flow Metab 1986;6:147–153.

72. Wong DF, Wagner HN Jr., Tune LE, et al. Positron emission tomography reveals elevated D2 dopamine receptors in drug naive schizophrenics. Science 1986;234:1558–1563.

73. Young LT, Wong DF, Goldman S, et al. Effects of endogenous dopamine on kinetics of [3H]raclopride binding in the rat brain. Synapse 1991;9:188–194.

Back to Chapter

published 2000