Central Norepinephrine Neurons and Behavior
Trevor W. Robbins1 and Barry J. Everitt2
Depts. of 1Experimental Psychology and 2Anatomy
University of Cambridge
Downing Street
Cambridge, CB2 3EB United Kingdom
fax: (44)(1223) 314 547
e-mail: twr.2@hermes.cam.ac.uk
REFERENCES
1. Abercrombie ED, Keller RW, Zigmond MJ.
Characterization of hippocampal norepinephrine release as measured by microdialysis
perfusion: pharmacological and behavioral studies. Neuroscience
1988; 27: 897-904.
2 Acheson A, Zigmond MJ, Stricker EM. Compensatory increases
in tyrosine hydroxylase activity in the rat brain after intraventricular injection
of 6-hydroxydopamine. Science 1980; 207: 537-540.
3. AlZahrani SSA, AlRuwaitea ASA, Ho MY, Bradshaw CM,
Szabadi E. Destruction of central noradrenergic neurones with DSP4 impairs the
acquisition of temporal discrimination but does not affect memory for duration
in a delayed conditional discrimination task. Psychopharmacology 1997;
130: 166-173.
4 Amaral DG, Sinnamon HM. The locus coeruleus: neurobiology of a central noradrenergic nucleus.
Prog. Neurobiol. 1977;
9 : 147-196.
5. Arnsten A. Catecholamine modulation of prefrontal
cortical function. Trends in Cognitive Sciences,
1998; 2: 436-446.
6. Arnsten AFT,
Contant TA. Alpha-2 adrenergic agonists decrease distractibility in aged monkeys
performing the delayed response task. Psychopharmacology 1992;108:159-169.
7. Arnsten AFT,
Goldman-Rakic PS. Alpha 2-adrenergic
mechanisms in prefrontal cortex associated with cognitive decline in aged non-human
primates. Science 1985; 230: 1273-1276.
8. Arnsten AFT Jentsch JD. The alpha-1 adrenergic agonist,
cirazoline, impairs spatial working memory performance in aged monkeys. Pharmacol.
Biochem. Behav. 1997; 58: 55-59.
9. Arnsten AFT, Cai
JX, Goldman-Rakic PS. The
alpha-2 adrenergic agonist guanfacine improves memory in aged monkeys without
sedative or hypotensive side effects: evidence for alpha-2 receptor subtypes.
J. Neurosci.;198
; 8: 4287-4298.
10. Aston-Jones G, Chiang C, Alexinsky T. Discharge
of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests
a role in vigilance. Prog. Brain Res. 1991; 88:501-520.
11. Aston-Jones G, Rajkowski J, Kubiak, P, Alexinsky
T. Locus coeruleus neurons in monkey are selectively activated by attended cues
in a vigilance task. J. Neurosci. 1994; 14, 4467-4480.
12. Aston-Jones G, Rajkowski J, Kubiak P. Conditioned
responses of monkey locus coeruleus neurons anticipate acquisition of discriminative
behavior in a vigilance state. Neurosci. 1997: 80; 697-715.
13. Bedard MA, ElMassioui F, Malapani C, Dubois B, Pillon
B, Renault B. Attentional deficits in Parkinson’s disease: Partial reversibility
with naphtoxazine (SDZ NVI-085), a selective adrenergic alpha (1) agonist. Clinical
Neuropharmacology 1998; 21: 108-117.
14. Borsini F, Rolls ET. Role of noradrenaline and serotonin
in the basolateral regions of the amygdala in food preference and learned taste
aversion in the rat. Physiol. Behav. 1984; 33: 37-43.
15. Britton DR, Ksir C, Thatcher-Britton K, Young D,
Koob GF. Brain-norepinephrine-depleting lesions selectively enhance behavioral
responses to novelty. Physiol. Behav. 1984; 33: 473-478.
16. Cahil, L, Prins B, Weber M, McGaugh JL. Beta-adrenergic
activation and memory for emotional events. Nature 1994;
371: 702-704.
17. Carli M, Robbins TW, Evenden JL, Everitt BJ.
Effects of lesions to ascending noradrenergic neurons on performance of a 5-choice
serial reaction task in rats: implications for theories of dorsal noradrenergic
bundle function based on selective attention and arousal. Behav. Brain Res.
1983; 9: 361-380.
18. Chen MF, Chiu TH, Lee EH. Noradrenergic mediation
of the memory enhancing effect of corticotrophin releasing factor in the locs
coeruleus of rats. Psychoendocrin. 1992; 17: 113-124.
19.Clark CR, Geffen,GM, Geffen, LB. Catecholamines and
attention II: Pharmacological studies in normal humans. Neurosci. Biobehav.
Rev. 1987; 11: 353-364.
20. Clark CR, Geffen
GM, Geffen LB. Catecholamines and the
covert orienting of attention. Neuropsychologia 1986;
27:131-140.
21. Cole BJ, Robbins TW. Dissociable effects of lesions
to the dorsal or ventral noradrenergic bundle on the acquisition, performance
and extinction of aversive conditioning. Behav. Neurosci. 1987; 101:
476-488.
22. Cole BJ, Robbins
TW. Amphetamine impairs the discrimination
performance of rats with dorsal noradrenergic bundle lesions on a 5-choice serial
reaction time task: new evidence for central dopaminergic-noradrenergic interactions.
Psychopharmacol. 1987; 91: 458-466.
23. Cole BJ, Robbins TW, Everitt BJ. Lesions of the
dorsal noradrenergic bundle simultaneously enhance and reduce responsivity to
novelty in a food preference test. Brain Res. Rev. 1988; 13: 325-349.
24.Cole BJ, Robbins TW. Effects of 6-hydroxydopamine
lesions of the nucleus accumbens septi on performance of a 5 choice serial reaction
time task in rats; implications for theories of selective attention and arousal.
Behav. Brain Res.1989; 33: 165-179.
25. Cole BJ, Robbins
TW. Forebrain norepinephrine: Role in controlled
information processing in the rat. Neuropsychopharmacology, 1992; 7: 129-141.
26. Coull JT, Sahakian, BJ , Hodges JR. The alpha-2 antagonist idazoxan remediates certain attentional and executive
forms of dysfunction in patients with dementia of the frontal-type. Psychopharmacology
1995; 123: 239-249.
27. Coull JT, Middleton HC, Robbins, TW, Sahakian BJ. Contrasting effects of
clonidine and diazepam on tests of working
memory and planning. Psychopharmacology 1995; 120:
311-321.
28.Coull JT , Middleton, HC, Robbins TW, Sahakian B.J. Clonidine and diazepam
have differential effects on tests of attention and learning. Psychopharmacology 1995; 120:
322-332.
29. Coull JT, Frith CD, Dolan RJ, Frackowiak
RSJ, Grasby PM. The neural correlates of the noradrenergic modulation of human
attention, arousal and learning. Eur. J. Neurosci. 1997; 9: 589-598.
30. Crowe SF, Shaw S. Salbutamol overcomes the effect
of the noradrenergic neurotoxin DSP-4 on memory function in the day-old chick
Behavioral Pharmacology 1997; 8, 216-222.
31. Davis HP, Callahan MJ, Downs DA. Clonidine disrupts
aged monkey delayed response performance. Drug Dev Res 1988; 12: 279-286.
32. Davis M, Hitchock JM, Rosen JB. Anxiety and the
amygdala: pharmacological and anatomical analysis of the fear-potentiated startle
paradigm. In: Bower G., ed. The Psychology
of Learning and Motivation. New York: Academic Press, 1987;
263-305.
33. Devauges V, Sara SJ. Activation of the noradrenergic
system facilitates an attentional shift in the rat. Behav. Brain Res. 1990;
39: 19-28.
34. Dooley DJ, Jones, GH, Robbins TW. Noradrenaline- and time-dependent changes in
neocortical a2- and b1- adrenoceptor binding in dorsal noradrenergic bundle-lesioned rats. Brain
Res. 1987; 420: 152-156.
35. Dunn LT, Everitt
BJ . The effects of lesions to the noradrenergic projections from the locus
ceruleus and lateral tegmental cell groups on conditioned taste aversion in
the rat. Behav.Neurosci. 1987; 101: 409-422.
36. Ellis ME, Kesner
RP. The noradrenergic system of the amygdala and aversive information processing.
Behav. Neurosci. 1983; 97:
399-415.
37. Evenden JL, Marston HM, Jones GH, Giardini V, Lenard
L, Everitt BJ, Robbins TW Effects of excitotoxic lesions of the substantia innominata,
ventral and dorsal globus pallidus on visual discrimination acquisition, performance
and reversal in the rat. Behav. Brain Res. 1989; 32: 129-149.
38. Everitt BJ, Robbins TW, Gaskin M, Fray PJ. The
effects of lesions to noradrenergic neurons on discrimination learning and performance
in the rat. Neuroscience 1983; 10: 397-410.
39. Eysenck MW Attention and Arousal. Berlin:
Springer-Verlag, 1982.
40. Flicker C, Geyer M. Behavior during hippocampal
microinfusions. I. Norepinephrine and diverse exploration. Brain Res. Rev.
1982; 4: 79-103.
41. Franowicz JCS, Arnsten AFT. The alpha-2A antagonist,
guanfacine, improves delayed response performance in young adult rhesus monkeys.
Psychopharmacol. 1998; 136:8-14.
42. French N, Lalies MD, Nutt DJ, Pratt J. Idazoxan-induced reductions in cortical
glucose use are accompanied by an increase in noradrenaline release-complementary
(C-14) 2-deoxyglucose and microdialysis studies. Neuropharmacol. 1995;
34: 605-613.
43. Frith CD, Dowdy
J, Ferrier N, Crow TJ. Selective impairment
of paired associate learning after administration of a centrally-acting adrenergic
agonist (clonidine), Psychopharmacol. 1985; 87: 490-493.
44. Gallagher M, Kapp BS, Musty RE, Driscoll, P.A. Memory formation: evidence for a specific neurochemical system in
the amygdala. Science 1977; 198: 423-425.
45. Goodwin GM, Conway SC, Peyro-Saint-Paul H, Glabus
MF, O’Carroll RE, Ebmeier KP. Executive function and uptake of 99mTc-exametrazine
shown by single photon emission tomography after oral idazoxan in probable Alzheimer-type
dementia. Psychopharmacol. 1997; 131: 371-378.
46. Gray JA. The Neuropsychology of Anxiety. Oxford, Clarendon Press, 1982.
47. Harley C. Noradrenergic
and locus coeruleus modulation of the perfornat path-evoked potential in the
rat dentate gyrus supports a role for the locus coeruleus in attentional and
memorial processes. Prog. Brain Res. 1991: 88: 307-321.
48. Hernandez L, Hoebel BG. Overeating after midbrain
6-hydroxydopamine: prevention by central injection of selective catecholamine
re-uptake blockers. Brain Res. 1982; 245: 333-343.
49. Jackson WJ, Buccafusco JJ. Clonidine enhances delayed
matching-to-sample performance by young and aged monkeys. Pharmacol Biochem
Behav 1991; 39: 79-84.
50. Jacobs BL Central monoaminergic neurons: single
unit studies in behaving animals. In Meltzer HY ed. Psychopharmacology: The
Third Generation of Progress. New York: Raven Press, 1987; 159-169.
51. Kasamatsu T. Neuronal
plasticity maintained by the central norepinephrine system in the cat visual
cortex. In: Sprague JM, Epstein AN,
eds. Progress in Psychobiology and Physiological Psychology Vol. 10.
New York: Academic Press, 1983; 1-112.
52. Koger SM, Mair RG Depletion of cortical norepinephrine
in rats by 6-hydroxydopamine does not impair performance of a delayed matching
to sample task. Behav. Neurosci.
1992; 106: 718-721.
53. Kolb B, Sutherland RJ. Noradrenaline depletion blocks
behavioral sparing and alters cortical morphogenesis after neonatal frontal
cortex damage in rats. J. Neuroscience 1992; 12: 2321-2330.
54. Koob GF, Thatcher-Britton K, Britton DR, Roberts
DCS. Destruction of the locus coeruleus or the dorsal NE bundle does not alter
the release of punished responding by ethanol and chlordiazepoxide. Physiol.Behav.
1984; 33: 479-485.
55. Langlais PJ, Connor DJ, Thal L. Comparison of the
effects of single and combined lesions of the nucleus basalis magnocellularis
and the dorsal noradrenergic bundle on learning and memory in the rat. Behav. Brain Res. 1993; 54: 81-90.
56. Liang KC, McGaugh
JL, Yao H-Y. Involvement of amygdala
pathways in the influence of post-training amygdala norepinephrine and peripheral
epinephrine on memory storage. Brain Res. 1990; 508: 225-233.
57. Lorden JF, Rickert EJ, Dawson RJ Jr., Pelleymounter
M. Forebrain norepinephrine and the selective processing of information. Brain
Res. 1980; 190: 569-573.
58. McGaugh
JL, Liang KC, Bennett C, Sternberg DB. Adrenergic influences on memory storage:
interaction of peripheral and central systems. In: Lynch G, McGaugh JL, Weinberger NM, eds. Neurobiology of Learning and Memory. New
York: The Guilford Press, 1984; 313-332.
59. McGaughy J, Sandstrom M, Ruland S, Bruno
JP, Sarter M (1997) Lack of effects of lesions of the dorsal noradrenergic bundle
on behavioral vigilance. Behav. Neurosci. 1997; 111: 646-652.
60. Mair RG, McEntee WJ. Cognitive enhancement in Korsakoff's
psychosis by clonidine: a comparison with L-DOPA and ephedrine. Psychopharmacol.
1986; 88: 374-380.
61. Mason ST, Iversen
SD. Theories of the dorsal bundle extinction effect. Brain Res. Rev.
1979, 1, 107-137.
62. Mason
ST, Lin D. Dorsal noradrenergic bundle and selective attention. J. Comp.Physiol.
Psychol. 1980; 94: 819-832.
63. Muir
JL, Everitt, BJ, Robbins TW. The cerebral cortex of the rat and visual
attentional function: dissociable effects of mediofrontal,
cingulate, anterior dorsolateral and parietal cortex lesions on a 5-choice serial reaction time task. Cerebral
Cortex 1995; 6: 470-481
64. Ohno M, Yoshimatsu A, Kobayashi M, Watanabe S. Noradrenergic
DSP-4 lesions aggravate impairment of working memory produced by muscarinic
blockade in rats. Pharmacol. Biochem. Behav. 57: 257-261.
65. Pineda JA, Foote SL, Neville HJ. Effects of locus
coeruleus lesions on auditory, lon-latency, event-related potentials in monkey.
J. Neurosci. 1989; 9: 81-93.
66. Pisa M, Fibiger HC. Evidence against a role of the
rat's dorsal noradrenergic bundle in selective attention and place memory.
Brain Res. 1983; 272: 319-329.
67. Rauschecker JP. Mechanisms of visual plasticity:
Hebb synapses, NMDA receptors and beyond. Physiol. Rev. 1991; 71: 587-615.
68. Redmond DE. New
and old evidence for the involvement of a brain norepinephrine system in anxiety,
In: Fann WG, I. Karacan, Pokorny D,
Williams RL, eds.) Phenomenology and Treatment of Anxiety.
New York: Spectrum 1979; 153-203.
69. Robbins TW. Cortical noradrenaline, attention and
arousal. Psychol. Med. 1984; 14: 13-21.
70. Robbins TW, Everitt BJ, Cole BJ, Archer T, Mohammed A.
Functional hypotheses of the coeruleo-cortical noradrenergic projection:
a review of recent experimentation and theory. Physiol. Psychol.1985
; 13: 127-150.
71. Roberts DCS, Price MTC, Fibiger HC. The dorsal tegmental
noradrenergic projection: an analysis of its role in maze learning. J. Comp.
Physiol. Psychol. 1976; 90: 363-372.
72. Rowe J., Durantou, F, Saunders, J , Robbins,
TW. Systemic idazoxan impairs performance in a non-reversal shift test:
implications for the role of the cerebral noradrenergic systems in selective attention. 1996; J. Psychopharmacol . 10: 188-194.
73. Sahakian BJ, Winn P, Robbins TW, Dooley RJ, Everitt
BJ, Dunn LT, Wallace M, James WPT. Changes
in body weight and food-related behaviour induced by destruction of the ventral
or dorsal noradrenergic bundle. Neuroscience 1983; 10: 1405-1420.
74. Sara SJ, Dyon-Laurent G, Gilbert B, Leviel V. Noradrenergic
hyperactivity after partial fornix section; role in cholinergic dependent memory
performance. Exp. Brain Res. 1992; 89: 125-132.
75. Sara SJ, Segal M. Plasticity of sensory responses
of locus coeruleus neurons in the behaving rat; behavioral implications. Prog.
in Brain Res. 1991; 88: 571-585.
76. Segal M, Bloom FE. The action of norepinephrine
in the rat hippocampus. IV. The effects of locus coeruleus stimulation on evoked
hippocampal activity. Brain Res. 1976; 107: 513-525.
77. Selden NRW, Robbins TW, Everitt BJ. Enhanced behavioral
conditioning to context and impaired behavioral and neuroendocrine responses
to conditioning stimuli following ceruleo-cortical noradrenergic lesions: support
for an attentional hypothesis of central noradrenergic function. J. Neurosci.
1990; 10: 531-539.
78. Selden NRW, Cole
BJ, Everitt BJ, Robbins TW. Damage to ceruleo-cortical noradrenergic
projections impairs locally cued but enhances spatially cued water maze acquisition.
Behav. Brain Res. 1990; 39: 29-52.
79. Selden NRW,
Everitt BJ, Jarrard LE, Robbins TW. Complementary roles for the amygdala and hippocampus
in aversive conditioning to explicit and contextual cues. Neuroscience
1991; 2: 335-350.
80. Selden NRW, Everitt BJ, Robbins TW. Telencephalic
but not diencephalic noradrenaline depletion enhances behavioral but not endocrine
measures of fear conditioning to contextual stimuli. Behav. Brain Res. 1992;
43: 139-154.
81. Selden NRW, Robbins TW, Everitt BJ. Diencephalic
noradrenaline depletion impairs the corticosterone response to footshock but
does not affect conditioned fear. J. Neuroendocrin. 1993; 4 : 773-779.
82. Simson PG, Weiss JM, Hoffman LJ, Ambrose MJ. Reversal
of behavioral depression by infusion of an alpha-2 adrenergic agonist into the
locus ceruleus. Neuropharmacol. 1986; 25: 385-389
83. Sirvio J, Mazurkiewicz M, Haaplinna A, Riekkinen
P, Lahtinen H, Riekkinen PJ. The effects of selective alpha-2-adrenergic agents
on the performance of rats in a 5-choice serial reaction time task. Brain
Res.Bull. 1994, 451-455.
84. Smith AP, Nutt D. Noradrenaline and attention lapses.
Nature 1996; 380: 291.
85. Smith AP, Wilson SJ, Glue P, Nutt DJ. The effects
and after-effects of the alpha-2-adrenoceptor antagonist idazoxan on mood, memory
and attention in normal volunteers. J. Psychopharmacol. 1992; 6:385-389.
86. Steketee JD, Silverman PB, Swann AC. Noradrenergic
mechanisms in neophobia. Psychopharmacol. 1992; 106: 136-142.
87. Tassin J-P, Herve D, Vezina P, Trovero F, Blanc G, Glowinski J. Relationships between mesocortical and mesolimbic dopamine neurons:
functional correlates of D1 receptor heteroregulation. In: Willner P,
Scheel-Kruger J, eds.The Mesolimbic Dopamine System: From Motivation to Action.
Chichester: Wiley 1991; 175-196.
88. Taylor JR, Elsworth JD, Garcia EJ, Grant SJ, Roth
RH, Redmond DE Jr. Clonidine infusions into the locus coeruleus attenuate behavioral
and neurochemical changes associated with naloxone-precipitated withdrawal.
Psychopharmacol. 1988; 96: 121-134.
89. Tsaltas E, Preston GC, Gray JA . The effects of dorsal bundle lesions on serial and trace
conditioning. Behav. Brain Res. 1983;
10: 361-374.
90. van Stegeren AH, Everaerd W, Cahill L, McGaugh JL,
Gooren LJG. Memory for emotional events: differential effects of centrally versus
peripherally acting B-blocking agents. Psychopharmacology 1998; 138, 305-310.
91. Wenk G, Hughey D, Boundy V, Kim A, Walker L, Olton
D. Neurotransmitters and memory; Role of cholinergic, serotonergic and noradrenergic
systems. Behav. Neurosci. 1987; 101: 325-332.
92. Witte EA, Marrocco RT. Alteration of brain noradrenergic
activity in rhesus monkeys affects the alerting component of covert orienting.
Psychopharmacol. 1997; 132: 315-323.
Back to Chapter
published 2000