Biochemical Pharmacology of Midbrain Dopamine Neurons

R. H. Roth and J. D. Elsworth
Departments of Pharmacology and Psychiatry
Yale University School of Medicine
New Haven, Connecticut 06520.


REFERENCES

1. Aborelius L, Nomikos GG, Hacksell U, Svensson TH. (R)-8-OH-DPAT preferentially increases dopamine release in rat medial prefrontal cortex. Acta Physiol Scand 1993;148:465–466.

2. Arborelius L, Chergui K, Murase S, Nomikos GG, Höök BB, Chouvet G, Hacksell U, Svensson TH. The 5-HT1a receptor selective ligands, (R)-8-OH-DPAT and (S)-UH-301, differentially affect the activity of midbrain dopamine neurons. Naunyn Schmiedebergs Arch Pharmacol 1993;347:353–362.

3. Bacopoulos NG, Mass JW, Hattox SE, Roth RH. Regional distribution of dopamine metabolites in human and primate brain. Commun Psychopharmacol 1978;2:281–286.

4. Bacopoulos NG, Spokes EG, Bird ED, Roth RH. Antipsychotic drug action in schizophrenic patients: selective effect on cortical dopamine metabolism after chronic treatment. Science 1979; 205:1405–1407.

5. Bannon MJ, Freeman AS, Chiodo LA, Bunney BS, Roth RH. The pharmacology and electrophysiology of mesolimbic dopamine neurons. In: Iversen LL, ed. Handbook of psychopharmacology, vol 19. New York: Plenum Press, 1987;329–374.

6. Bannon MJ, Roth RH. Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 1983;35(1):53–68.

7. Bean AJ, Dagerlind A, Hokfelt T, Dobner PR. Cloning of human neurotensin/neuromedin N genomic sequences and expression in the ventral mesencephalon of schizophrenics and age/sex matched controls. Neuroscience 1992;50(2):259–268.

8. Bean AJ, Roth RH. Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of median forebrain bundle stimulation frequency, stimulation pattern and dopamine autoreceptors. J Neurosci 1991;11:2694–2702.

9. Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. TINS 1991;14:24–27.

10. Bodis-Wollner I, Piccolini M, eds. Dopaminergic mechanisms in vision. New York: Alan R Liss, 1988;1–276.

11. Bunney BS. Antipsychotic drug effects on the electrical activity of dopaminergic neurons. TINS 1984;7:212–215.

12. Chergui K, Charléty PJ, Akaoka H, Saunier CF, Brunet J-L, Buda M, Svensson TH, Chouvet G. Tonic activation of NMDA receptors causes spontaneous burst discharge of rat midbrain dopamine neurons in vivo. Eur J Neurosc 1993;5:137–144.

13. Clark D, White FJ. Review: D1 dopamine receptor—the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1987;1:347–388.

14. Crawley JN. Cholecystokinin–dopamine interactions. Trends Pharmacol Sci 1991;12:232–236.

15. Deutch AY, Cameron DS. Pharmacological characterization of dopamine systems in the nucleus accumbens core and shell. Neuroscience 1992;46:49–56.

16. Deutch AY, Goldstein M, Baldino F Jr, Roth RH. Telencephalic projections of the A8 dopamine cells group. Ann NY Acad Sci 1988;537:27–50.

17. Deutch AY, Maggio JE, Bannon MJ, Kalivas PW, Tam S-Y, Goldstein M, Roth RH. Substance K and substance P differentially modulate mesolimbic and mesocortical systems. Peptides 1985; 6:113–122.

18. Deutch AY, Roth RH. Alterations in dopamine synthesis induced by chronic neuroleptic administration: a possible biochemical correlate of depolarization inactivation. Soc Neurosci Abstr 1988;14:27.

19. Deutch AY, Roth RH. Calcitonin gene-related peptide in the ventral tegmental area: selective modulation of prefrontal cortical dopamine metabolism. Neurosci Lett 1987;74:169–174.

20. Deutch AY, Roth RH. The determinants of stress-induced activation of the prefrontal cortical dopamine system. In: Uylings HBM, Van Eden CG, DeBruin JPC, Corner MA, Feenstra MGP, eds. Progress in brain research, vol 85. Amsterdam: Elsevier Science Publishers BV, 1990;367–403.

21. Elsworth JD, Al-Tikriti M, Sladek JR Jr, Taylor JR, Innis RB, Redmond DE Jr, Roth RH. A novel radioligand for the dopamine transporter demonstrates presence of nigral grafts in caudate nucleus of MPTP monkey with improved behavioral function. Exp Neurol 1994;[in press].

22. Elsworth JD, Deutch AY, Redmond DE Jr, Taylor JR, Sladek JR Jr, Roth RH. Symptomatic and asymptomatic 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates: biochemical changes in striatal regions. Neuroscience 1989;33:323–331.

23. Elsworth JD, Redmond DE Jr, Sladek JR Jr, Deutch AY, Collier TJ, Roth RH. Reversal of MPTP-induced Parkinsonism in primates by fetal dopamine cell transplants. In: Franks AJ, Ironside JW, Mindham RHS, eds. Function and dysfunction of the basal ganglia. Manchester: Manchester University Press, 1989;161–180.

24. Elsworth JD, Roth RH, Redmond DE Jr. The relative importance of 3-methoxy-4-hydroxyphenylglycol (MHPG) and 3,4-dihydroxy-phenylglycol (DHPG) as norepinephrine metabolites in rat, monkey and human tissue. J Neurochem 1983;41(3):786–793.

25. Fallon JH. Topographic organization of ascending dopaminergic projections. Ann NY Acad Sci 1988;537:1–9.

26. Frost JJ, Rosier AJ, Reich SG, Smith JS, Ehlers MD, Snyder SH, Ravert HT, Dannals RF. Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Ann Neurol 1993;34:423–431.

27. Fuxe K, Agnati LF, Ogren S-O, Kohler C, Calzu L, Benfenati F, Goldstein M, Anderson K, Neroth P. The heterogeneity of the dopamine systems in relation to the actions of dopamine agonists. Acta Pharm Suec [Suppl] 1983;1:60–79.

28. Goldstein LE, Rasmusson AM, Bunney BS, Roth RH. The NMDA glycine site antagonist (+)-HA-966 selectively regulates psychological stress-induced metabolic activation of the mesoprefrontal cortical dopamine but not serotonin systems: a behavioral, neuroendocrine, and neurochemical study in the rat. J Neurosci 1994{ewc MVIMG, MVIMAGE,!infinity.bmp} press.

29. Gonon FG. Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 1988;24:19–28.

30. Graybiel AM. Correspondence between the dopamine islands and striosomes of the mammalian striatum. Neuroscience 1984;13:1157.

31. Gully D, Canton M, Boigegrain R, Jeanjean R, Molimard F, Pancelet J-C, Gueudét C, Heaulme M, Leyris R, Brouard A, Pelaprat D, Labbé-Jullié, Mazella J, Soubrié P, Maffrand JP, Rosténe W, Kitabgi P, LeFur G. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc Natl Acad Sci USA 1993;90:65–69.

32. Haycock JW. Four forms of tyrosine hydroxylase are present in human adrenal medulla. J Neurochem 1991;56:2139–2142.

33. Heimer L, Zahm DS, Churchill L, Kalivas PW, Wohltmann C. Specificity in the projection patterns of accumbal core and shell. Neuroscience 1991;41:89–126.

34. Herve D, Simon H, Blanc G, LeMoal M, Glowinski J, Tassin JP. Opposite changes in dopamine utilization in the nucleus accumbens and the frontal cortex after electrolytic lesion of the median raphe in the rat. Brain Res 1981;261:422–428.

35. Hitri A, Wyatt J. Regional differences in rat brain dopamine transporter binding: function of time after chronic cocaine. Clin Neuropharmacol 1993;16:525–539.

36. Innis R, Seibly J, Wallace E, Scanley E, Laruele M, Abi-Dargham A, Zea-Ponce Y, Zoghbi S, Charney D, Wang S, Gao Y, Neumeyer J, Baldwin R, Marek R, Hoffer P. SPECT imaging demonstrates loss of striatal dopamine transporters in Parkinson's disease. Proc Natl Acad Sci USA 1994;90:11965–11969.

37. Johnson SW, Seutin V, North RA. Burst firing in dopamine neurons induced by N-Methyl-D-aspartate: role of electrogenic sodium pump. Science 1992;258:665–667.

38. Kalivas PJ. Neurotransmitter regulation of dopamine neurons in the ventral tegmental area. Brain Res Rev 1993;18:75–113.

39. Kalivas PW, Alesdattger JE. Involvement of N-methyl-D-aspartate receptor stimulation in the ventral tegmental area and amygdala in behavioral sensitization to cocaine. J Pharmacol Exp Ther 1993;267:486–495.

40. Kaufman M, Madras B. Severe depletion of cocaine recognition sites associated with the dopamine transporter in Parkinson's diseased striatum. Synapse 1991;49:43–49.

41. Kilts CD, Anderson CM, Ely TD, Nishita JK. Absence of synthesis-modulating nerve terminal autoreceptors on mesoamygdaloid and other mesolimbic dopamine neuronal populations. J Neurosci 1987;7:3961–3975.

42. Laruelle M, Baldwin RM, Malison RT, Zea-Ponce Y, Zoghbi SS, Al-Tikriti MS, Sybirska EH, Zimmerman RC, Wisniewski G, Neumeyer JL, Milius RA, Want S, Charney D, Roth RH, Hoffer PB, Innis RB. SPECT imaging of dopamine and serotonin transporters with [123I]-b-CIT: pharmacological characterization of brain uptake in nonhuman primates. Synapse 1993;13:295–309.

43. Morrow BA, Clark WA, Roth RH. Stress activation of mesocorticolimbic dopamine neurons: effects of a glycine/NMDA receptor antagonist. Eur J Pharmacol 1993;238:255–262.

44. Nissbrant H, Sundström E, Jonsson G, Hjorth S, Carlsson A. Synthesis and release of dopamine in rat brain: comparison between substantia nigra pars compacta, pars reticulata, and striatum. J Neurochem 1989;52:1170–1182.

45. Oreland L. Monoamine oxidase, dopamine and Parkinson's disease. Acta Neurol Scand 1991;84:60–65.

46. Papel A, Uhl G, Kuhar MJ. Species differences in dopamine transporters: postmortem changes and glycosylation differences. J Neurochem 1993;61:496–500.

47. Phillipson OT. Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 1979;187:117–143.

48. Pifl C, Reither H, Hornykiewicz O. Lower efficacy of the dopamine D1 agonist, SKF 38393, to stimulate adenylyl cyclase activity in primate than in rodent striatum. Eur J Pharmacol 1991;202:273–276.

49. Redmond DE Jr, Roth RH, Spencer DD, Naftolin F, Leranth C, Robbins RJ, Marek KL, Elsworth JD, Taylor JR, Sass KJ, Sladek JR Jr. Neural transplantation for neurodegenerative disease: past, present, and future. In: Nitsch RM, Crowdon JH, Corkin S, eds. Disease: amyloid precursors and proteins, signal transductions, and neuronal transplantation. Cambridge, MA: Center for Brain Sciences and Metabolism Charitable Trust, 1993;51–60.

50. Robertson HA. Dopamine receptor interactions: some implications for the treatment of Parkinson's disease. Trends Neurol Sci 1992;15:201–205.

51. Roth RH, Tam S-Y. Regulatory control of midbrain dopamine neurons. In: Kaufman S, ed. Amino acids in health and disease: new perspectives. UCLA Symposia on Molecular and Cellular Biology, New Series, Volume 55. Alan R Liss, New York, 1987;159–178.

52. Roth RH, Wolf ME, Deutch AY. Neurochemistry of midbrain dopamine systems. In: Meltzer HY, ed. Psychopharmacology: the third generation of progress. New York: Raven Press, 1987;81–94.

53. Roth RH. CNS dopamine autoreceptors: distribution, pharmacology and function. Ann NY Acad Sci 1984;430:27–53.

54. Sandler M, Usdin E, eds. Phenolsulfo-transferase in mental health research. New York: Macmillan, 1981.

55. Schalling M, Friberg K, Seroogy K, Riederer P, Bird E, Schiffman SN, Mailleux P, Vansderhaeghen J-J, Kuga S, Goldstein M, Kitahama K, Lumm PH, Jouvet M, Hökfelt T. Analysis of expression of cholecystokinin in dopamine cells in the ventral mesencephalon of several species and in humans with schizophrenia. Proc Natl Acad Sci USA 1990;87:8427–8431.

56. Seroogy KB, Mehta A, Fallon JH. Neurotensin and cholecystokinin coexist within neurons of the ventral mesencephalon: projections to the forebrain. Exp Brain Res 1987;68:277–289.

57. Shepard PD, Lehmann H. (±)-1-Hydroxy-3-aminopyrrolidone-2 (HA-966) inhibits the activity of substantia nigra dopamine neurons through a non-N-methyl-D-aspartate receptor-mediated mechanism. J Pharmacol Exp Ther 1992;261(2):387–394.

58. Shi WX, Bunney BS. Actions of neurotensin: a review of the electrophysiological studies. Ann NY Acad Sci 1992;669:129–145.

59. Singh L, Donald AE, Foster AC, Hutson PH, Iversen LL, Iversen SD, Kemp JA, Leeson PD, Marshall GR, Oles RJ, Priestley T, Thorn L, Tricklebank MD, Vass CA, Williams BJ. Enantiomers of HA-966 (3-amino-1-hydroxypyrrolid-2-one) exhibit distinct central nervous system effects: (+)-HA-966 is a selective glycine/N-methyl-D-aspartate receptor antagonist, but (-)-HA-966 is a potent gamma-butyrolactone-like sedative. Proc Natl Acad Sci USA 1990;87:347.

60. Sladek JR Jr, Elsworth JD, Roth RH, Evans LE, Collier TJ, Cooper SJ, Taylor JR, Redmond DE Jr. Fetal dopamine cell survival after transplantation is dramatically improved at a critical donor gestational age in nonhuman primates. Exp Neurol 1993;122:16–27.

61. Taylor JR, Lawrence MS, Redmond DE Jr, Elsworth JD, Roth RH, Nichols DE, Mailman RB. Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in African green monkeys. Eur J Pharmacol 1991;199:389–391.

62. Teicher MH, Gallitano AL, Gelbard HA, Evans HK, Marsh ER, Booth RG, Baldessarini RJ. Dopamine D1 autoreceptor function: possible expression in developing rat prefrontal cortex and striatum. Dev Brain Res 1991;63:229–235.

63. Tepper JM, Groves PM, Young SJ. The neuropharmacology of the autoinhibition of monoamine release. Trends Pharmacol Sci 1985;6:251.

64. Wachtel SR, Hu XT, Galloway MP, White FJ. D1 dopamine receptor stimulation enables the postsynaptic, but not autoreceptor, effects of D2 dopamine agonists in nigrostriatal and mesoaccumbens dopamine systems. Synapse 1989;4(4):327–346.

65. Waddington JL, O'Boyle KM. Drugs acting on brain dopamine receptors: a conceptual reevaluation five years after the first selective D1 antagonist. Pharm Ther 1989;43:1–52.

66. Walaas I, Fonnum F. Biochemical evidence for g-aminobutyrate containing fibres from the nucleus accumbens to the substantia nigra and ventral tegmental area in the rat. Neuroscience 1980;5:63–72.

67. Watts VJ, Lawler CP, Gilmore JH, Southerland SB, Nichols DE, Mailman RB. Dopamine D1 receptors: efficacy of full (dihydrexidine) vs. partial (SKF38393) agonists in primates vs. rodents. Eur J Pharmacol 1993;242:165–172.

68. Westerink BHC, Santiago M, DeVries JB. In vivo evidence for a concordant response of terminal and dendritic dopamine release during intranigral infusions of drugs. Naunyn Schmiedebergs Arch Pharmacol 1992;346:637–643.

69. Wolf ME, Roth RH. Heterogeneity of midbrain dopamine neurons: Implications for psychiatry. Psychiatry Lett 1988;VI(1-6);24–32.

70. Wolf ME, Roth RH. Autoreceptor regulation of dopamine synthesis. Ann NY Acad Sci 1990;604:323–343.

71. Yang CR, Mogenson GJ. Dopamine enhances terminal excitability of hippocampal-accumbens neurones via D-2 receptor: role of dopamine in presynaptic inhibition. J Neurosci 1986;6:2470–2478.

72. Zahm DS, Brog JS. On the significance of subterritories in the "accumbens" part of the rat ventral striatum. Neuroscience 1992;751–767.

Back to Chapter

published 2000