Structure and Function of Cholinergic Pathways in the Cerebral Cortex, Limbic System, Basal Ganglia, and Thalamus of the Human Brain
M-M Mesulam
Department of Neurology
Northwestern University Medical School
Chicago, Illinois 60611.
REFERENCES
1. Arendt T, Bigl V, Tennstedt A, Arendt A. Neuronal loss in different parts of the nucleus basalis is related to neuritic plaque formation in cortical target areas in Alzheimer's disease. J Neurosci 1985;14:1–14.
2. Bear MF, Singer W. Modulation of visual cortical plasticity by acetylcholine and noradrenaline. Nature 1986;320:172–176.
3. Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurol Sci 1989;12:148–151.
4. Buzsaki G. Commentary: Two-stage model of memory trace formation: a role for "noisy" brain states. Neuroscience 1989;31:551–570.
5. Buzsaki G, Bickford RG, Ponomareff G, Thal LJ, Mandel R, Gage FH. Nucleus basalis and thalamic control of neocortical activity in the freely moving rat. J Neurosci 1988;8:4007–4026.
6. Cortes R, Probst A, Palacios JM. Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: forebrain. Neuroscience 1987;20:65–107.
7. Churchland PS, Sejnowski TJ. The computational brain. In: Plasticity: cells, circuits, brains and behavior. Cambridge, MA: MIT Press, 1992;239–329.
8. Dingledine R, Kelly JS. The brainstem stimulation and the acetylcholine-invoked inhibition of neurons in the feline nucleus reticularis thalami. J Physiol 1977;271:135–154.
9. Dodt HU, Misgeld U. Muscarinic slow excitation and muscarinic inhibition of synaptic transmission in the rat neostriatum. J Physiol (Lond) 1986;380:593–608.
10. Emre M, Heckers S, Mash DC, Geula C, Mesulam M-M. Cholinergic innervation of the amygdaloid complex in the human brain and its alterations in old age and Alzheimer's disease. J Comp Neurol 1993;336(1):117–134.
11. Etienne P, Robitaille Y, Wood P, Gauthier S, Nair NPV, Quirion R. Nucleus basalis neuronal loss, neuritic plaques and choline acetyltransferase activity in advanced Alzheimer's disease. J Neurosci 1986;19:279–1291.
12. Frotscher M, Leranth C. Cholinergic innervation of the rat hippocampus as revealed by choline acetyltransferase immunocytochemistry: A combined light and electron microscopic study. J Comp Neurol 1985;239:237–246.
13. Geula C, Mesulam M-M. Cortical cholinergic fibers in aging and Alzheimer's disease: a morphometric study. Neuroscience 1989;33: 469–481.
14. Geula C, Schatz CR, Mesulam M-M. Differential localization of NADPH-Diaphorase and calbindin-D 28K within the cholinergic neurons of the basal forebrain, striatum and brainstem in the rat, monkey, baboon and human. Neuroscience 1993;54(2):461–476.
15. Gillin JC, Sutton L, Ruiz C, Kelsoe J, Dupont RM, Dovko D, Risch SC, Golshan S, Janowsky D. The cholinergic rapid eye movement induction test with arecholine in depression. Arch Gen Psychiatry 1991;48:264–270.
16. Gorry JD. Studies on the comparative anatomy of the ganglion basale of Meynert. Acta Anat (Basel) 1963;55:51–104.
17. Green RC, Mesulam M-M. Acetylcholinesterase fiber staining in the human hippocampus and parahippocampal gyrus. J Comp Neurol 1988;273:488–499.
18. Hallanger AE, Levey AI, Lee HJ, Rye DB, Wainer BH. The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J Comp Neurol 1987;262:105–124.
19. Hammond EJ, Meador KJ, Aunq-Din R, Wilder BJ. Cholinergic modulation of human P3 event-related potentials. Neurology 1987;37:346–350.
20. Hasselmo ME, Anderson BP, Bower JM. Cholinergic modulation of cortical associative memory function. J Neurophysiol 1992; 67:1230–1246.
21. Heckers S, Geula C, Mesulam M-M. Acetylcholinesterase-rich pyramidal neurons in Alzheimer's disease. Neurobiol Aging 1992; 13:455–460.
22. Heckers S, Geula C, Mesulam M-M. Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 1992;325:68–82.
23. Hefti F, Hartikka J, Salvaterra A, Weiner WJ, Mash D. Localization of nerve growth factor receptors in cholinergic neurons of the human basal forebrain. Neurosci Lett 1986;69:37–41.
24. Hoover DB, Baisden RH. Localization of putative cholinergic neurons innervation the anteroventral thalamus. Brain Res Bull 1980;5:519–524.
25. Hoover DB, Jacobowitz DM. Neurochemical and histochemical studies of the effect of a lesion of the nucleus cuneiformis on the cholinergic innervation of discrete areas of the rat brain. Brain Res 1979;70:113–122.
26. Hosey MM. Diversity of structure, signaling and regulation within the family of muscarinic cholinergic receptors. FASEB J 1992; 6:845–852.
27. Ikeda M, Houtani T, Ueyama T, Sugimoto T. Choline acetyltransferase immunoreactivity in the cat cerebellum. Neuroscience 1991;45:671–690.
28. Irle E, Markowitsch HJ. Basal forebrain-lesioned monkeys are severely impaired in tasks of association and recognition memory. Ann Neurol 1987;22:735–743.
29. Kayama J, Takagi M, Ogawa T. Cholinergic influence of the laterodorsal tegmental nucleus on neuronal activity in the rat lateral geniculate nucleus. J Neurophysiol 1986;56:1297–1309.
30. Kordower JH, Mufson EJ. Galanin-like immunoreactivity within the primate basal forebrain: differential staining patterns between humans and monkeys. J Comp Neurol 1990;294:281–292.
31. Lacey MG, Calabresi P, North RA. Muscarine depolarizes rat substantia nigra zona compacta and ventral tegmental neurons in vitro through M1-like receptors. J Pharmacol Exp Ther 1990;253:395–400.
32. Layer PG, Sporns O. Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye. Proc Natl Acad Sci USA 1987;84:284–288.
33. Martinez-Murillo R, Villalba RM, Rodrigo J. Electron microscopic localization of cholinergic terminals in the rat substantia nigra: an immunocytochemical study. Neurosci Lett 1989;96:121–126.
34. Mash DC, White WF, Mesulam M-M. Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 1988;278:265–274.
35. McCance I, Phillis JW, Westerman RA. Acetylcholine-sensitivity of thalamic neurons: its relationship to synaptic transmission. Br J Pharmacol 1986;32:635–651.
36. McCormick DA. Cellular mechanisms of cholinergic control of neocortical and thalamic neuronal excitability. In: Steriade M, Biesold D, eds. Brain cholinergic systems. New York: Oxford University Press, 1990;236–264.
37. Mesulam M-M. Patterns in behavioral neuroanatomy. In: Mesulam M-M, ed. Principles of behavioral neurology. Contemporary Neurology Series. Philadelphia: FA Davis, 1985;1–70.
38. Mesulam M-M. Central cholinergic pathways: neuroanatomy and some behavioral implications. In: Avoli M, Reader TA, Dykes RW, Gloor P, eds. Neurotransmitters and cortical function. New York: Plenum Press, 1988;237–260.
39. Mesulam M-M. Large scale neurocognitive networks and distributed processing for attention, language and memory. Ann Neurol 1990;28:597–613.
40. Mesulam M-M, Geula C. Acetylcholinesterase-rich pyramidal neurons in the human neocortex and hippocampus: absence at birth, development during the life span, and dissolution in Alzheimer's disease. Ann Neurol 1988;24:765–773.
41. Mesulam M-M, Geula C. Nucleus basalis (Ch4) and cortical cholinergic innervation of the human brain: observations based on the distribution of acetylcholinesterase and choline acetyltransferase. J Comp Neurol 1988;275:216–240.
42. Mesulam M-M, Geula C. Acetylcholinesterase-rich neurons of human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol 1991;306:193–220.
43. Mesulam M-M, Geula C. Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res 1992;577:112–120.
44. Mesulam M-M, Geula C, Bothwell MA, Hersh LB. Human reticular formation: cholinergic neurons of the pedunculopontine and laterodorsal tegmental nuclei and some cytochemical comparisons to the forebrain cholinergic neurons. J Comp Neurol 1989;281:611–633.
45. Mesulam M-M, Hersh LB, Mash DC, Geula C. Differential cholinergic innervation within functional subdivisions of the human cerebral cortex: a choline acetyltransferase study. J Comp Neurol 1992;318:316–328.
46. Mesulam M-M, Mash D, Hersh L, Bothwell M, Geula C. Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra and red nucleus. J Comp Neurol 1992;323:252–268.
47. Mesulam M-M, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata) and hypothalamus in the rhesus monkey. J Comp Neurol 1983;214:170–197.
48. Metherate R, Tremblay N, Dykes RW. The effects of acetylcholine on response properties of cat somatosensory cortical neurons. J Neurophysiol 1988;59:1231–1252.
49. Mikol J, Menini M, Brion S, Guicharnaud L. Connections of the laterodorsal nucleus of the thalamus in the monkey. Study of efferents. Rev Neurol (Paris) 1984;140:615–624.
50. Mishkin M. A memory system in the monkey. Philos Trans R Soc Lond [Biol] 1982;298:85–92.
51. Mitani A, Ito K, Hallanger AE, Wainer BH, Kataoka K, McCarley RW. Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res 1988;451:397–402.
52. Moruzzi G, Magoun HW. Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1949; 1:459–473.
53. Mufson EJ, Bothwell M, Hersh LB, Kordower JH. Nerve growth factor receptor immunoreactive profiles in the normal, aged human basal forebrain: colocalization with cholinergic neurons. J Comp Neurol 1989;285:196–217.
54. Penney JB, Young AB. Speculations on the functional anatomy of basal ganglia disorders. Annu Rev Neurosci 1983;6:73–94.
55. Phelps PE, Houser CR, Vaughn JE. Immunocytochemical localization of choline acetyltransferase within the rat striatum: a correlated light and electron microscopic study of cholinergic neurons and synapses. J Comp Neurol 1985;238:286–307.
56. Phillis JW, Tebecis AK, York DH. A study of cholinoceptive cells in the lateral geniculate nucleus. J Physiol 1967;192:695–713.
57. Pickel VM, Chan J. Spiny neurons lacking choline acetyltransferase immunoreactivity are major targets of cholinergic and catecholaminergic terminals in rat striatum. J Neurosci Res 1990;25:263–280.
58. Ramon-Moliner E, Nauta WJH. The isodendritic core of the brain. J Comp Neurol 1966;126:311–336.
59. Ridley RM, Murray TK, Johnson JA, Baker HF. Learning impairment following lesion of the basal nucleus of Meynert in the marmoset: modification by cholinergic drugs. Brain Res 1986;376:108–116.
60. Satoh K, Fibiger HC. Cholinergic neurons of the laterodorsal tegmental nucleus: efferent and afferent conditions. J Comp Neurol 1986;253:277–302.
61. Sato H, Hata V, Hagihara K, Tsumoto T. Effects of cholinergic depletion on neuron activities in the cat visual cortex. J Neurophysiol 1987;58:781–794.
62. Schröder H, Giacobini E, Struble RG, et al. Muscarinic cholinoceptive neurons in the frontal cortex in Alzheimer's disease. Brain Res Bull 1991;227:631–636.
63. Smith Y, Parent A. Differential connections of caudate and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 1986; 18:347–371.
64. Steriade M, Gloor P, Llinas RR, Lopes da Silva FH, Mesulam M-M. Basic mechanisms of cerebral rhythmic activities. Electroencephalogr Clin Neurophysiol 1990;76:481–508.
65. Steward DF, Macfabe DF, Vanderwolf CH. Cholinergic activation of the electrocorticogram: role of the substantia innominata and effects of atropine and quinuclidinyl benzilate. Brain Res 1984; 322:219–232.
66. Sugimoto T, Hattori T. Organization and efferent projections of nucleus tegmenti pedunculopontinus pars compacta with special reference to its cholinergic aspects. Neuroscience 1984;11:931–946.
67. Tanaka Y, Sakurai M, Hayashi S. Effect of scopolamine and HP029, a cholinesterase inhibitor, on long-term potentiation in hippocampal slices of guinea pig. Neurosci Lett 1989;98:179–183.
68. Umbriaco D, Watkins KF, Descarries L, Cozzari C, Hartman B. Ultrastructural features of acetylcholine axon terminals in adult rat cerebral cortex. Soc Neurosci Abstr 1990;16:1057.
69. Vijayashankar N, Brody H. A quantitative study of the pigmented neurons in the nuclei locus coeruleus and sub coeruleus in man as related to aging. J Neuropathol Exp Neurol 1979;38:490–497.
70. Vincent SR, Hope BT. Neurons that say no. Trends Neurol Sci 1992;15:108–113.
71. Wainer BH, Bolam JP, Freund TF, Henderson Z, Totterdell S, Smith AD. Cholinergic synapses in the rat brain: a correlated light and electron microscopic immunohistochemical study employing a monoclonal antibody against choline acetyltransferase. Brain Res 1984;308:69–76.
72. Wainer BH, Mesulam M-M. Ascending cholinergic pathways in the rat brain. In: Steriade M, Biesold D, eds. Brain cholinergic systems. New York: Oxford University Press, 1990;65–119.
73. Wilson FAW, Rolls ET. Neuronal responses related to reinforcement in the primate basal forebrain. Brain Res 1990;509:213–231.
74. Wilson FAW, Rolls ET. Neuronal responses related to novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp Brain Res 1990;80:104–120.
75. Woolf NJ, Butcher LL. Cholinergic systems in the rat brain. III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia, and basal forebrain. Brain Res Bull 1986;16:603–637.
76. Xuereb JH, Perry EK, Candy JM, Bonham JR, Perry RH, Marshall E. Parameters of cholinergic neurotransmission in the thalamus in Parkinson's disease and Alzheimer's disease. J Neurol Sci 1990;99:185–197.
77. Yeomans JS, Kofman O, McFarlane V. Cholinergic involvement in lateral hypothalamic rewarding brain stimulation. Brain Res 1984;329:19–26.
78. Yoshimura H, Ueki S. Biochemical correlates in mouse-killing behavior of the rat: prolonged isolation and brain cholinergic function. Pharmacol Biochem Behav 1977;6:193–196.
published 2000