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MECHANISM OF ACTION OF
ATYPICAL ANTIPSYCHOTIC DRUGS

HERBERT Y. MELTZER

ATYPICAL ANTIPSYCHOTIC DRUGS:
WHAT IS TO BE EXPLAINED

The designation of chlorpromazine, and subsequently halo-
peridol, thioridazine, loxapine, thiothixene, molindone, pi-
mozide, and related compounds as antipsychotic drugs (1)
reflects their predominant action in humans, namely the
suppression of auditory hallucinations and delusions, in
some, but not all, individuals with diagnoses of schizophre-
nia as well as other psychoses. These drugs are also called
neuroleptics because they caused catalepsy in rodents and
extrapyramidal side effects (EPSs) in humans (2). Their abil-
ity to diminish psychotic symptoms was convincingly
shown to be initiated by blockade of dopamine (DA) D2
receptors in mesolimbic nuclei, especially the nucleus ac-
cumbens, stria terminalis, and the extended amygdala
(2–5). Blockade of D2 receptors in terminal regions, e.g.,
the striatum, nucleus accumbens, and prefrontal cortex, by
these agents initially causes compensatory increases in the
activity of dopaminergic neurons in the substantia nigra
and ventral tegmentum, respectively, followed by a gradual
decrease in the activity of DA neurons, and, ultimately,
complete inactivation of DA neuron firing in both regions
(6). This so-called depolarization block was suggested to be
the reason for the slow onset of antipsychotic action, which
is observed in some, but not all, psychotic patients. The
development of depolarization block following subchronic
haloperidol treatment has been challenged by Melis et al.
(7) on the basis of microdialysis studies of DA release in
the nigrostriatal system, but those findings have been sug-
gested by Moore et al. (8) to be an artifact.
These first-generation antipsychotic drugs are often re-

ferred to as typical antipsychotic drugs because they typically
produce EPSs, e.g., acute dystonic reactions, subacute par-
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kinsonism, and akathisia, and, after chronic use, tardive dys-
kinesia or dystonia (see Chapter 56) as a direct or indirect
result of blockade of D2 receptors in the dorsal striatum,
in vulnerable individuals. The immediate cause of acute and
subacute EPSs is considered to be blockade of the dopami-
nergic inhibition of striatal cholinergic neurons, leading to
increased cholinergic activity in the basal ganglia (2). Subse-
quently, clozapine was found to achieve an antipsychotic
effect without causing EPSs, whereas loxapine, a clozapine
congener, was equipotent in producing its antipsychotic ac-
tion and EPS in humans and laboratory animals (10). This
led Hippius and Angst to describe clozapine as an atypical
antipsychotic drug (11). Preclinical scientists almost invaria-
bly refer to clozapine and other drugs that have antipsy-
chotic properties and low EPSs as atypical antipsychotics
but, as will be discussed, clinical investigators do not univer-
sally accept this designation.
The atypical profile of clozapine was initially attributed

to its anticholinergic properties, which, along with other
unknown features, caused selective depolarization of the A9
DA neurons in the substantia nigra, which project to the
dorsal striatum, sparing those of the A10 ventral tegmen-
tum, which project to the cortex and mesolimbic systems
(12). The subsequent evidence that clozapine, compared
to neuroleptic drugs such as haloperidol, had at least six
advantages in addition to producing significantly less EPS
and tardive dyskinesia, has attracted enormous interest to
clozapine and other subsequently developed atypical anti-
psychotic drugs. These six effects of clozapine, not all of
which are fully shared with other atypical antipsychotic
drugs, are (a) absence of tardive dyskinesia; (b) lack of serum
prolactin elevations in humans; (c) ability to eliminate posi-
tive symptoms without exacerbating motor symptoms in
patients with Parkinson’s disease who become psychotic due
to exogenous dopaminergic agents such as levodopa (L-
DOPA); (d) ability to decrease or totally eliminate psychotic
symptoms in approximately 60% of the patients with schiz-
ophrenia who fail to respond to typical neuroleptic drug;
(e) ability to improve primary and secondary negative symp-
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toms; and (f) ability to improve some domains of cognition
in patients with schizophrenia, especially secondary memory
and semantic memory (verbal fluency) (9,11,13). Some of
the atypical antipsychotic drugs have also been shown to
be more effective than the typical neuroleptic drugs in im-
proving depression, stabilize mood, and decrease suicidality
(9,10). These collective advantages of clozapine led to the
search for the mechanism(s) involved in these effects and
to find drugs that did not have the panoply of side effects
of clozapine, especially agranulocytosis (9).
The other widely available antipsychotic drugs that are

classified as atypical, by consensus, are, in order of their
introduction, risperidone, olanzapine, sertindole, quetia-
pine, and ziprasidone. Melperone, a butyrophenone, intro-
duced at about the same time as clozapine, has also been
suggested to be an atypical antipsychotic drug because of
its many clinical similarities with clozapine (14). Other
agents with the essential clinical characteristics of an atypical
antipsychotic drug that are currently at an advanced stage
of clinical testing are iloperidone, ORG-5222, and aripipra-
zole (9,10). Zotepine and amisulpride, both of which are
widely used antipsychotic drugs in Europe, are also some-
times grouped with the atypical antipsychotic drugs (9,10).
With the exception of aripiprazole, a partial DA agonist
(15), and amisulpride, a selective D2/D3 antagonist (16),
all of the drugs listed above cause potent serotonin (5-hy-
droxytryptamine, 5-HT) receptor subtype 5-HT2A relative
to DA D2 receptor blockade (17–19).
There are a very large number of drugs in development

as antipsychotics that have the property of being active in
various animal models that predict antipsychotic action,
e.g., blockade of amphetamine-induced locomotor activity
or of the conditioned avoidance response, at doses 5- to 20-
fold lower than that which produce catalepsy, a predictor of
EPSs. All of these drugs are routinely referred to as putative
atypical antipsychotic drugs, at least by preclinical scientists,
because of their ability to produce an antipsychotic action
at doses that do not cause significant EPSs in humans and
a comparable dissociation in animal models of psychosis
and EPSs, e.g., blockade of conditioned avoidance response
and blockade of DA-induced locomotor activity, and the
induction of catalepsy, respectively. These drugs differ
greatly in chemical structure and, to some extent, pharmaco-
logic profile, and thus cannot be referred to as a group by
either chemical class or pharmacologic profile. However,
some clinical investigators find the term atypical antipsy-
chotic drug misleading because there are important clinical
differences among the compounds with regard to the six
clinical features of clozapine noted above, and they prefer
the term novel or new generation over atypical to describe
these agents. However, this temporal-based nomenclature
is not routed in any meaningful or enduring characteristic
of these agents. Others prefer to call themmultireceptor anti-
psychotics, which is clearly preferable to 5-HT/DA antago-
nists, another commonly used term. It is our view that these
other designations have no specific advantages and some

disadvantages compared to the classic term atypical. Thus,
this chapter continues to use the term atypical to designate
antipsychotic drugs that have a major advantage with regard
to EPSs in patients with schizophrenia or Parkinson’s dis-
ease, or both, to contrast with the typical antipsychotic
drugs, and to update some of the key hypotheses for explain-
ing some of the other highly valued advantages of these
agents, as well as their unique side effects.
As can be expected, there has been an intensive effort to

determine the basis for the differences between the typical
and atypical antipsychotic drugs. This chapter reviews the
major hypotheses, which are based on the pharmacologic
profiles of the numerous classes of agents with atypical prop-
erties as well as current theories of the action of drugs effec-
tive in animal models of psychosis, but not yet adequately
tested in humans, e.g., AMPA antagonists and metabotropic
glutamate receptor antagonists (20,21).
The affinities of clozapine and some of its congeners for

monoamine receptors are given elsewhere in this volume
(see Chapter 56) (22). The affinities reported therein are
for the D1, D2, D3, D4, 5-HT1A, 5-HT1D, 5-HT2A, 5-
HT2C, 5-HT6, 5-HT7, �1, �2, H1, and muscarinic M1
receptors. Of these, the greatest interest is in the role of
D2, D4, 5-HT1A, 5-HT2A, 5-HT2C, �1, and �2 receptors.
Clozapine does have effects on glutamate and GABA neu-
rons and interneurons, respectively, but space considera-
tions preclude their discussion here.

ROLE OF D2 RECEPTORS

Most effective antipsychotics, typical as well as atypical,
have affinities for the DA D2 receptor high enough to sug-
gest that they produce effective blockade of these receptors
in vivo (23,24). The model for atypical antipsychotic drug
action proposed by Meltzer et al. (17) postulated that atypi-
cal antipsychotic drugs had to have someD2 receptor block-
ade in vivo, although weaker than 5-HT2A receptor block-
ade, to achieve a low EPS profile and, possibly, some of the
other advantages of clozapine. An exception to this may be
amperozide, with is a potent 5-HT2A antagonist and DA
reuptake inhibitor with very low affinity for the D2 receptor
(25). Recently, NRA0045, which has potent 5-HT2A, D4,
and �1 but no D2 or D3 receptor blockade has been found
to have atypical antipsychotic properties (26). Partial DA
agonists, which may act as agonists at presynaptic DA recep-
tors, and antagonists at postsynaptic DA receptors are a new
class of antipsychotic drugs that has promise (15,27,28).
However, clinical testing of these agents is just beginning,
and current data support only the view that they are atypical
in the classic sense, i.e., they are antipsychotic in preclinical
or clinical testing at doses that produce weak or absent EPSs.
Other evidence of the importance of �1 antagonism for
atypical antipsychotic drug activity will be discussed subse-
quently. The in vitro affinity of a drug at the DA D2 recep-
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tor is a useful predictor of the dose that produces EPSs and
control of positive symptoms for typical neuroleptic drugs
(2,29), although it does not do so for some atypical antipsy-
chotic drugs, e.g., ziprasidone. Furthermore, there is no
agreement on how to determine the doses used in such
correlations because of the differences in dosage require-
ments as a function of stage of illness, body mass index,
and age. There is little agreement even on the best dose for
haloperidol, the most widely used antipsychotic drug. A
wide range of 2 to 15 mg/day has been suggested, far re-
moved from the 20 to 40 mg/day thought to be most effec-
tive in 1966 (9,10). To date, no clinically proven antipsy-
chotic with the possible exception of amperozide lacks
significant D2 receptor antagonist properties. As will be
discussed, the combination of D2 and 5-HT2A receptor
blockade, in the right ratio, produces some of the effects of
clozapine and other atypical antipsychotic drugs in rodents,
e.g., increases DA efflux in the cortex and striatum of rats
(30) and blockade of the conditioned avoidance response,
an indication of antipsychotic activity (31). There have been
only limited tests of this hypothesis in humans, mainly using
ritanserin, which is a mixed 5-HT2A/2B/2C antagonist (32).
Nevertheless, various comprehensive reviews of the action
of the atypical antipsychotic drugs have concluded that the
combination of 5-HT2A, D2, and �1 receptor blockade is
the probable basis of their antipsychotic action (10,18,19,
22,33–37). The evidence for this hypothesis will be dis-
cussed subsequently.
Counter to the hypothesis of the importance of 5-HT2A

receptor antagonism to the action of clozapine and other
atypical antipsychotic drugs is the proposal of Seeman and
Tallerico (24) and Kapur and Seeman (38) that the basis
of atypical antipsychotics may lie in their rapid dissociation
from the DAD2 receptor and their relatively easily displace-
ment by surges of endogenous DA. It has also been proposed
that rapid and extensive displacement of clozapine and que-
tiapine from binding sites accounts for the reported low
occupancy of striatal D2 receptors by these drugs (24). The
authors also suggested that this might account for more
rapid relapse following clozapine and quetiapine withdrawal
(24). Although the evidence cited for clozapine-induced rel-
atively rapid relapse is robust (39), the evidence with regard
to quetiapine and rapid relapse has never been published
and does not accord with general clinical experience. See-
man and Tallerico found that the affinity for and rate of
dissociation of antipsychotics from the D2 receptor are
highly correlated. Drugs with low affinity for the D2 recep-
tor, e.g., clozapine and quetiapine, were found to have a
higher dissociation rate constant than drugs with higher
affinity, e.g., haloperidol. Rapid dissociation from the D2
receptor was reported to also permit easier displacement
of clozapine and quetiapine by endogenous DA, thereby
avoiding side effects related to DA receptor blockade such
as EPSs and hyperprolactinemia (38). It was also reported
that olanzapine, risperidone, and sertindole, all of which
are well established as atypical antipsychotic drugs, are com-

parable to haloperidol in their rate of dissociation from the
D2 receptor and are not displaced by raclopride or iodoben-
zamide, as are clozapine and quetiapine (24). Thus, this
hypothesis could not explain the basis for their low EPSs.
Moreover, for these agents to achieve their antipsychotic
action, they would have to be less easily displaced from
limbic and possibly cortical D2 receptors. There are no data
to support this selectivity with regard to displacement as
yet. Although there is evidence for higher occupancy of
extrastriatal D2 receptors by clozapine and quetiapine in
patients with schizophrenia (40,41), and for atypical anti-
psychotic drugs that show more potent 5-HT2A receptor
blockade in rodents (42), the same appears to be true for
olanzapine, which does not show the higher off-rates of
clozapine and quetiapine (R. Kessler and H. Meltzer, in
preparation). Because clozapine produces a greater increase
in DA release in the cortex than in the accumbens or stria-
tum, at least in rodents and monkeys (43), clozapine might
be expected to produce greater occupancy of D2 receptors
in these regions than the cortex, but, as noted above, this
is not the case. It is also not clear how this model could
explain any of the advantages of clozapine with regard to
efficacy in neuroleptic-resistant patients or for cognition.
Studies on the regulation of prefrontal cortical or limbic

DA release also provide no evidence that blockade of D2
receptors alone, regardless of degree of occupancy, can
mimic the effects of the multireceptor antagonists such as
clozapine (31,44,45). Pharmacologic analysis of this impor-
tant model for the action of atypical antipsychotic drugs
on cognition and negative symptoms strongly supports the
importance of combined blockade of 5-HT2A, D2, and pos-
sibly �1 receptors (36,37,44,45).

D3 AND D4 RECEPTOR MECHANISMS

Ever since the cloning and characterization of the distribu-
tion of the D3 and D4 receptors, which revealed a limbic
and cortical distribution, there has been considerable specu-
lation about the role of these receptors in schizophrenia and
the mechanism of action of antipsychotic drugs (19,46–48).
As specific antagonists have become available, it has been
possible to test their efficacy in animal models of psychosis,
cognition, and motor function, as well as to carry out some
clinical trials in schizophrenia. Recently, Reavill et al. (49)
reported that SB-277011-A, which has high affinity and
selectivity for the D3 receptor and good brain bioavailabil-
ity, has an atypical antipsychotic drug profile. This com-
pound was active in preventing isolation-induced deficits in
prepulse inhibition but was not effective in blocking either
amphetamine- or phencyclidine (PCP)-induced locomotor
activity or, by using microdialysis, to increase prefrontal
cortical DA release in rats (49). However, subchronic ad-
ministration of SB-277011-A selectively decreased the firing
rate of A10, but not A9, DA neurons in the rat, indicating
a clozapine-like profile (50). These are the most promising
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data yet that a selective antagonist of D3 receptors might
be useful in the treatment of psychosis.
On the basis of the finding that the affinity of clozapine

for the cloned DA D4 receptor was two to three times
greater than that for the D2 receptor, Van Tol et al. (51)
suggested that blockade of the D4 receptor was the basis
for the superiority of clozapine over the typical neuroleptic
drugs in the treatment of schizophrenia. Other investigators
have found less of a difference between the affinity of cloza-
pine for D2 and D4 receptors (48). Several typical antipsy-
chotic drugs, including haloperidol, have nearly equivalent
affinity for D2 andD4 receptors, suggesting that D4 affinity
per se does not convey any special advantages for an antipsy-
chotic drug (48). The preclinical behavioral and electro-
physiologic profile of highly selective D4 antagonists pro-
vides mixed evidence with regard to antipsychotic action
associated with this receptor (52–54). A D4/�1 antagonist,
NRA0025, appears to have promise as an antipsychotic
agent based on its preclinical profile (26). A clinical trial of
a selective D4 antagonist showed no sign of activity (55).
A compound with potent 5-HT2A and D4 antagonist prop-
erties, finanserin, was also ineffective (56). Further clinical
trials of compounds that have D4 or D3 antagonism, or
both, together with high affinities for 5-HT1A or �1 recep-
tors, and without D2 affinity seems indicated.

ROLE OF SEROTONIN IN ANTIPSYCHOTIC
DRUG ACTION

Determining the biological basis for the advantages of clo-
zapine and other atypical antipsychotic drugs cited above
and described in detail by Miyamoto et al. in Chapter 56
has led to considerable interest in the role of 5-HT in anti-
psychotic drugs action. We now consider some of this evi-
dence. Other reviews of this topic should also be consulted
(18,19,22,34–37,57).

Serotonin Receptors Involved in
Antipsychotic Drug Action

The hypothesis that a relatively high affinity for the 5-HT2A
receptor compared to an affinity for the D2 receptor was
the basis for the difference between atypical and typical
antipsychotic agents contributed to the development of the
newer antipsychotic agents listed above, all of which support
the previously mentioned hypothesis of high affinity for
5-HT2A and low affinity for D2 receptors (17,58,59). How-
ever, other 5-HT receptors may be important to the action
of clozapine and other recently introduced antipsychotic
agents, or of potential value for developing more effective
or better tolerated antipsychotic agents. These include the
5-HT1A, 5-HT2A, 5-HT2C, 5-HT3, 5-HT6, and 5-HT7 re-
ceptors (19,22,33). Although some of the atypical antipsy-
chotic drugs developed on the basis of the 5-HT2A/D2 hy-

pothesis also have affinities for 5-HT2C, 5-HT3, 5-HT6, or
5-HT7 receptors that are in the same range as that for the
5-HT2A receptor, this is not characteristic of all of these
agents, and thus it is not likely that affinities for these recep-
tors are primary factors contributing to the low EPS profile
of the entire class of agents (19,22,60,61). However, this
does not rule out that actions at various 5-HT receptors
contribute to low EPSs of specific drugs, or other actions,
e.g., cognitive improvement or improvement in negative
symptoms. For example, 5-HT1A receptor agonism has also
been suggested to be able to contribute to an atypical anti-
psychotic drug profile (62), and some of the atypical anti-
psychotics are 5-HT1A partial agonists as well as 5-HT2A/
5-HT2C antagonists, e.g., clozapine, quetiapine, ziprasi-
done, and S16924 (63,64). The role of the 5-HT4 receptor
in cognition will be discussed subsequently. Furthermore,
there is some evidence of interactions among the 5-HT1A,
5-HT2A, and 5-HT2C receptors (19,35). Because of space
limitations, this chapter focuses on these three 5-HT recep-
tors and briefly considers the others.

ATYPICAL ANTIPSYCHOTICS AND THE
5-HT2A RECEPTOR

5-HT2A receptors have been implicated in the genesis of,
as well as the treatment of, psychosis, negative symptoms,
mood disturbance, and EPSs (17,19,33–36,45). The hallu-
cinogenic effect of indole hallucinogens has been related to
stimulation of 5-HT2A rather than 5-HT2C receptors (65).
Numerous studies have examined the density of 5-HT2A
receptors in various cortical regions of patients with schizo-
phrenia with decreased (66,67), increased (68), or normal
levels reported. It is well established that some typical and
atypical antipsychotic drugs can decrease the density of
5-HT2A receptors (69,70), so the postmortem results noted
above may be related to drug treatment. Positron emission
tomography (PET) studies have not found decreased
5-HT2A receptors in the cortex of never-medicated or un-
medicated patients with schizophrenia (71). As mentioned
above, the antipsychotic effect of clozapine has been attrib-
uted, in part, to its ability to block excessive 5-HT2A recep-
tor stimulation without excessive blockade of D2 receptors
(17). This conclusion is consistent with the high occupancy
of 5-HT2A receptors produced by clozapine at clinically ef-
fective doses and its low occupancy of D2 receptors (in the
30% to 50% range as measured with [3H]raclopride), the
latter being significantly below the 80% to 100% occupancy
usually produced by typical neuroleptic drugs (35,72–75).
The occupancy of 5-HT2A and D2 receptors has been stud-
ied with other novel antipsychotic drugs such as risperidone,
olanzapine, sertindole, and quetiapine with results similar
to those of clozapine; all are more potent 5-HT2A and D2
antagonists at appropriate doses, but less so than clozapine
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(72–75). Some of these agents (e.g., risperidone and olan-
zapine) produce high D2 occupancy at high doses (76,77).
The bell-shaped dose–response curve of risperidone,

with higher doses being less effective than lower doses (78),
is consistent with the hypothesis that excessive D2 receptor
antagonism may diminish some of the beneficial effects of
5-HT2A receptor blockade (17,19,33,35,36). The highly se-
lective 5-HT2Aagonist M100907, formerly MDL 100907,
has been found in a controlled study to have some efficacy
for treating positive and negative symptoms in hospitalized
schizophrenic patients (79). However, because it was less
effective than haloperidol, no further testing in schizophre-
nia has been scheduled at present. Nevertheless, the concept
that 5-HT2A antagonism may be useful to treat some forms
of psychosis, especially when combined with weak D2 re-
ceptor blockade, warrants further study. Other 5-HT2A se-
lective agents such as SR 46349B (80) are currently being
tested. Additional clinical evidence supporting the role of
5-HT2A receptor blockade in the action of clozapine and
possibly other drugs with potent 5-HT2A affinities is avail-
able from the several reports that the His452Tyr allele of
the 5-HT2A receptor, which is present in 10% to 12% of
the population, is associated with a higher frequency of poor
response to clozapine (81,82). Taken together, the evidence
from clinical trial data suggests that 5-HT2A receptor block-
ade may contribute to antipsychotic drug action.
There is additional basic research that is also consistent

with the relevance of 5-HT2A receptor blockade for antipsy-
chotic drug action. Thus, M100907 or other selective 5-
HT2A receptor antagonists, either alone or in combination
with selective antagonists of other receptors, have been
found to be effective in various animal models of psychosis.
These include (a) blockade of amphetamine-induced loco-
motor activity and the slowing of ventral tegmental area
(VTA) (A10) dopaminergic neurons (34); (b) blockade of
PCP- and dizocilpin (MK-801)–induced locomotor activ-
ity (83,84); (c) blockade of MK-801–induced prepulse in-
hibition (85); and (d) antipsychotic-like activity in the paw
test (86) among others. Of particular interest is the report
of Wadenberg et al. (31) that the combination of a median
effective dose (ED50) of raclopride, a D2 receptor antago-
nist, and M100907, but not M100907 alone, was effective
in blocking the conditioned avoidance response. The au-
thors concluded that 5-HT2A antagonism alone could not
achieve an antipsychotic action, but that minimal blockade
of D2 receptors was required to achieve such an effect. This
corresponds much more closely to the apparent clinical situ-
ation than do the models where M100907 alone was effec-
tive, e.g., blockade of PCP- or MK-801–induced locomotor
activity (34,83,84,87–89). As mentioned previously, ad-
ministration of even a single dose of atypical antipsychotic
drugs, which are relatively more potent 5-HT2A than D2
blockers, has been shown to down-regulate 5-HT2A recep-
tors in rat brain (69,70). This has now been shown to be

due to internalization of the receptors (70). Recovery from
this process requires the synthesis of new receptors.
An important effect of 5-HT2A (and 5-HT2C) receptors

that may be relevant to their contribution to psychosis is
their ability to influence dopaminergic activity in the meso-
limbic and mesostriatal systems (19,33,90–94). Increased
dopaminergic activity in the nucleus accumbens and other
mesolimbic and possibly cortical regions may contribute to
positive symptoms, including formal thought disorder (2,
5). Increased dopaminergic activity in the striatum would
be expected to diminish EPSs (2,5). The 5-HT2A/2C agonist
DOI [1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane],
which itself had no effect on basal DA release, potentiated
amphetamine-inducedDA release and attenuated the ability
of apomorphine, a direct acting D1/D2/D3 agonist, to de-
crease DA release in the striatum (93). Increasing serotonin-
ergic activity, e.g., by administration of selective serotonin
reuptake inhibitors (SSRIs) alone or in combination with
the 5-HT1A receptor antagonist WAY 100635, has no effect
on basal DA output in the striatum.However, the SSRIs can
significantly enhance the increase in DA outflow induced by
haloperidol. These findings indicate that in the striatum,
endogenous 5-HT positively modulates DA outflow when
nigrostriatal DA transmission is activated (94). There is now
considerable evidence from both behavioral and neuro-
chemical studies involving N-methyl-D-aspartate (NMDA)
antagonists such as PCP and MK-801 that 5-HT2A recep-
tors modulate activated but not basal mesolimbic DA func-
tion (84,95). Thus, stimulated DA release, e.g., with stress,
may be increased in the forebrain terminal regions second-
ary to enhanced stimulation of 5-HT2A receptors. Agents
that block the effect of excessive, but not basal, 5-HT2A
receptor stimulation may be the most useful clinically.
M100907 has been found to diminish the increase in DA
efflux in the nucleus accumbens produced by haloperidol
(30) or S-sulpiride (92). Taken together, these data suggest
that 5-HT2A antagonism by itself may have antipsychotic
action when dopaminergic activity is slightly to moderately
increased. More studies are needed to define the ability of
5-HT2A receptor antagonists to potentiate the action of low
doses of D2 receptor blockers in animal models as well as
in humans.
Jakab and Goldman-Rakic (96) have proposed that the

5-HT2A receptors on cortical pyramidal neurons may play a
crucial role in psychosis by virtue of their ability to modulate
intracortical and cortical-subcortical glutamatergic neuro-
transmission. This could contribute to the ability of 5-HT2A
antagonists to attenuate some of the behavioral effects of
PCP and ketamine. Aghajanian and Marek (97) have pro-
posed a link between the glutamate hypothesis of schizo-
phrenia and the hallucinogen hypothesis. Briefly, stimula-
tion of 5-HT2A receptors on layer V pyramidal cells
increases the frequency of postsynaptic potentials (PSPs).
These are mostly blocked by the AMPA/kainate gluta-
matergic receptor antagonist LY293558, indicating that
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they are mainly excitatory PSPs (EPSPs), in contrast with
the piriform cortex, where 5-HT produces inhibitory PSPs
(IPSPs). The selective group II metabotropic agonist
LY354740, which inhibits glutamate release by stimulating
inhibitory presynaptic autoreceptors on glutamatergic nerve
terminals, suppresses the 5-HT–induced increase in the fre-
quency of EPSPs. However, Aghajanian and Marek suggest
that the main way in which 5-HT2A receptor agonists in-
crease glutamate release is a retrograde action from stimula-
tion of postsynaptic 5-HT2A receptors. The type of gluta-
mate release induced by 5-HT2A receptor stimulation differs
from ordinary depolarization-induced neurotransmitter re-
lease, which is called synchronous release. The type of re-
lease induced by 5-HT is delayed in onset, slow, and pro-
duces small excitatory postsynaptic currents (EPSCs) and is
called asynchronous release. Aghajanian and Marek propose
that hallucinogens such as LSD enhance asynchronous
EPSCs. They suggest that stimulation of other types of 5-
HT receptors may oppose this action and that the effect of
5-HT2A receptor antagonists unmasks the effect of these
other types of 5-HT receptors (97). A similar proposal has
been made by Martin et al. (95). Although Aghajanian and
Marek do not mention the 5-HT1A receptor specifically, it
would be a good candidate to counter the effect of 5-HT2A
receptor stimulation, as will be discussed. They propose that
the thalamic filter hypothesis of Carlsson (98) might be
related to the effect of 5-HT2A receptor stimulation on tha-
lamocortical afferents to affect cortical function or on corti-
costriatal or corticothalamic efferents to affect the thalamic
filter.

SEROTONIN RECEPTORS AND COGNITIVE
FUNCTION

Clozapine, risperidone, ziprasidone, quetiapine, and olan-
zapine have been shown to improve selected areas of cogni-
tive function in patients with schizophrenia, with the avail-
able data suggesting differential effects on specific functions
(13). The available data suggest that each of the atypical
drugs has a different pattern of effects on cognitive dysfunc-
tion in schizophrenia, but more head-to-head studies are
needed to confirm this impression. Whether relatively more
potent 5-HT2A receptor compared to D2 antagonism has
a major or, indeed, any role in the cognitive effects of these
agents is not known. However, this is the major characteris-
tic that these drugs share in common. It may be that the
effect of these agents on cognition is mainly dependent on
their ability to increase the release of DA (99,100) and ace-
tylcholine in prefrontal cortex (101), which may depend,
in part, on their serotoninergic actions. The effect of the
atypical agents to increase DA efflux in themedial prefrontal
cortex (mPFC) of rats appears to be due mainly to actions
at the terminal regions rather than cell bodies and not to
be related to D2 receptor blockade because local administra-

tion of haloperidol is without effect whereas clozapine and
olanzapine produce huge increases in DA efflux (102). Stud-
ies have suggested that the clozapine, olanzapine, risperi-
done, and ziprasidone, but not haloperidol, may enhance
acetylcholine release in the rat prefrontal cortex (101,103).
Interactions between the 5-HT and cholinergic systems
have been previously reported (104). 5-HT1A, 5-HT2C, 5-
HT3, and 5-HT4 receptors have also been reported to have
significant effects on acetylcholine release in the rat prefron-
tal cortex (105–109).
Because cognitive enhancement is critical for functional

improvement in schizophrenia, establishing the mechanism
for the ability of the atypical antipsychotic drugs to increase
DA efflux is of the greatest importance. The evidence con-
cerning 5-HT receptors and cognition has been reviewed
in detail elsewhere (110,111). 5-HT2A/2C antagonists have
little adverse effect and no apparent beneficial effects on
learning and memory (112). There is some evidence that
5-HT4 agonists, e.g., RS 67333, can improve learning and
memory in rodents (113). Impairment of working memory
in humans following administration of the 5-HT1Aagonist
flesinoxan has been reported (114). However, Sumiyoshi et
al. (115) have found that tandospirone, a 5-HT1A partial
agonist, can improve other domains of cognition in patients
with schizophrenia treated with typical neuroleptic drugs.
Neurochemical differences in the patient populations, in-
cluding possible abnormalities in the density of 5-HT1A
receptors in schizophrenia, concomitant administration of
a neuroleptic to the patients with schizophrenia, and differ-
ences in the type of cognitive domain studied, may account
for this discrepancy. Further study in patients with schizo-
phrenia is clearly indicated.

5-HT2A RECEPTOR BLOCKADE AND
EXTRAPYRAMIDAL FUNCTION

There have been numerous suggestions to explain the low
EPSs of clozapine, namely its anticholinergic properties,
lack of ability to increase acetylcholine in the striatum, D1
or D4 receptor blockade, and its effects as an �1- or �2-
adrenoceptor antagonist (2,18,33,116). In addition, several
lines of evidence suggest that potent 5-HT2A receptor block-
ade is relevant to the low EPS profile of clozapine, but that
5-HT2A receptor blockade by itself cannot explain the low
EPS liability of these agents (17,58,59). Meltzer et al. (17)
studied a group of compounds that had antipsychotic activ-
ity in humans or in animal models that are thought to be
predictive of antipsychotic activity, e.g., conditioned avoid-
ance response or blockade of amphetamine-induced loco-
motor activity, and which produced weak EPSs in humans
or weak catalepsy in animals relative to their antipsychotic
efficacy. These compounds shared in common relatively
weaker D2 compared to 5-HT2A receptor affinities, whereas
D1 receptor affinities did not contribute to this effect.
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Among the drugs studied were melperone, a butyrophenone
long used in Europe and Scandinavia as an antipsychotic
and reported to produce low EPSs (14). Indeed, it has been
found to be tolerable to patients with Parkinson’s disease
(117), even more so than risperidone and olanzapine. The
�-shaped dose–response curve of risperidone as well as the
increasing incidence of EPSs as the dose increases for olan-
zapine and ziprasidone, together with PET studies of DA
receptor occupancy previously discussed, strongly suggests
that lower D2 receptor occupancy, possibly in relation to
high 5-HT2A receptor is necessary to avoid EPSs with these
compounds.
As previously discussed, numerous compounds of diverse

chemical structure that share this pharmacologic profile
have been identified or deliberately synthesized and tested
for antipsychotic action and EPS liability. These include
risperidone, olanzapine, sertindole, quetiapine, ziprasidone,
and iloperidone. All of these compounds can produce fewer
EPSs than haloperidol at comparable doses. Clozapine and
quetiapine have been shown to produce the least EPSs in
studies of patients with Parkinson’s disease. Consistent with
this concept, the 5-HT2A antagonist mianserin has been
reported to be effective in neuroleptic-induced akathisia
(118). There are also a variety of preclinical data to support
the importance of relatively high 5-HT2A compared to D2
receptor affinity to preserve striatal function. For example,
Ishikane et al. (119) reported that M100907 is able to block
haloperidol-induced catalepsy only at low doses of haloperi-
dol. Consistent with this, Spampinato et al. (120) reported
that specific 5-HT2A and 5-HT2C antagonists were able to
modulate the ability of haloperidol at 0.01 mg/kg but not
at a higher dose (1.0 mg/kg) to increase striatal DA release
in freely moving rats.

THE ROLE OF THE 5-HT2C RECEPTOR IN
ANTIPSYCHOTIC DRUG ACTION: 5-HT2A
AND 5-HT2C INTERACTIONS

There has been some consideration given to the role of
5-HT2C receptors in the action of atypical antipsychotic
drugs. The 5-HT2C receptor is found throughout the central
nervous system (CNS), including the ventral tegmentum
and the nucleus accumbens (121). With the availability of
specific 5-HT2C agonists and antagonists, evidence for a
tonic inhibitory action of 5-HT2C receptors on the burst
firing of mesolimbic and mesocortical dopaminergic neu-
rons has been obtained. Thus, the firing rate of VTA DA
neurons is inhibited or increased by 5-HT2C agonists or
antagonists, respectively. This is consistent with microdia-
lysis studies that show that 5-HT2C antagonists increase
extracellular concentrations of DA in the nucleus accum-
bens, striatum, and medial prefrontal cortex (91,122). Early
studies found no significant differences between groups of
novel antipsychotic drugs and typical neuroleptics with re-

gard to the affinity for 5-HT2C receptor or the difference
between 5-HT2C andD2 affinities (22,60). Of the approved
novel antipsychotic drugs, some have equivalent affinities
for the 5-HT2A and 5-HT2C receptors (clozapine, olanzap-
ine, sertindole), whereas others are more selective for the
5-HT2A receptor (risperidone, quetiapine, ziprasidone).
This difference roughly corresponds with the potential to
produce weight gain, in that clozapine and olanzapine cause
the greatest weight gain and risperidone and ziprasidone
the least (see Chapter 56). There is little available data for
sertindole and quetiapine, but they appear to be intermedi-
ate. There is no apparent relationship between 5-HT2C af-
finity relative to 5-HT2A affinity with regard to EPSs be-
cause quetiapine and ziprasidone are comparable to
olanzapine and sertindole in this regard. Similarly, there is
no apparent relationship to efficacy in treatment-resistant
schizophrenia. There could be a relationship to differences
among the atypical antipsychotic drugs with regard to im-
provement in specific types of cognitive function in schizo-
phrenia (13).
An interesting aspect of the 5-HT2C receptor with regard

to antipsychotic action is that 5-HT2C antagonism may be
functionally opposed to 5-HT2A antagonism. Meltzer et al.
(123) reported that atypical antipsychotic drugs were more
likely to be weak 5-HT2C and potent 5-HT2A antagonists
compared to typical neuroleptic drugs. Subsequently, neu-
rochemical (120) and behavioral (96,124) data have been
reported that support the notion of a functional antagonism
of these two receptors that may coexist on the same neurons.
Thus, Martin et al. (95) found that ritanserin, a mixed
5-HT2A/2C antagonist, blocked the ability of M100907 to
antagonize the effect of MK-801 to increase locomotor ac-
tivity in mice.

THE ROLE OF THE 5-HT1A RECEPTOR IN
ANTIPSYCHOTIC DRUG ACTION

The 5-HT1A receptor is located pre- and postsynaptically.
The presynaptic 5-HT1A receptor is an autoreceptor located
on cell bodies of raphe neurons; stimulation leads to inhibi-
tion of firing of 5-HT neurons. Stimulation of postsynaptic
5-HT1A receptors generally leads to hyperpolarization of
neurons, which is opposite of the effect of stimulation of
5-HT2A receptors. There is extensive evidence that cannot
be reviewed in detail here that indicates that 5-HT1A recep-
tor agonists and 5-HT2A receptor antagonists produce simi-
lar neurochemical and behavioral effects on a variety of mea-
sures (125,126). For example, DOI injected bilaterally into
the rat medial prefrontal cortex elicits a dose-dependent
head twitch response. This effect is inhibited by M100907
and ketanserin, relatively selective for 5-HT2A receptors at
appropriate doses, but not the selective 5-HT2C antagonist
SDZ SER082. Pretreatment with the 5-HT1A agonist
8-OH-DPAT also inhibited the head twitch response to
DOI (127). Ahlenius (128) first suggested that stimulation
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of 5-HT1A receptors might produce an antipsychotic like
action on the basis of behavioral studies in animals using the
direct 5-HT1A agonist 8-OH-DPAT. Subsequent studies
demonstrated that 8-OH-DPAT enhanced the antipsy-
chotic-like effect of the D2/D3 antagonist raclopride (129)
and of haloperidol (130), and antagonized the catalepsy in-
duced by the D1 agonist SCH23390 in rats (131). The
ability of clozapine to reverse olanzapine-induced catalepsy
is blocked by the selective 5-HT1A antagonistWAY 100635,
suggesting the effect of clozapine was mediated by stimula-
tion of 5-HT1A receptors. The beneficial effect of 5-HT1A
agonists appears to be mediated by inhibition of median
raphe serotoninergic neurons (132).
5-HT1A agonists have different regional effects on DA

release in the rat brain. 5-HT1A receptor stimulation appears
to inhibit DA release in subcortical regions. Thus, Ichikawa
et al. (133) demonstrated that the 5-HT1A agonist 8-OH-
DPAT inhibited the ability of amphetamine to increase ex-
tracellular DA levels in the nucleus accumbens and the stria-
tum of conscious rats. The effect of 5-HT1A receptor stimu-
lation in the nucleus accumbens would be expected to
enhance the antipsychotic effect of these agents by reducing
dopaminergic activity. Several atypical antipsychotic drugs,
including clozapine, ziprasidone, quetiapine, and tiospi-
rone, are partial agonist at the 5-HT1A receptor. Their affin-
ities for the 5-HT1A receptor are similar to their affinities
for the human D2 receptor (22). Rollema et al. (134) dem-
onstrated that the ability of clozapine to increase DA release
in the rat prefrontal cortex was due, in part, to its 5-HT1A
agonist properties, as it could be blocked by WAY-100635,
a 5-HT1A antagonist. Ichikawa et al. (92) have extended
these findings in a variety of ways; e.g., the ability of risperi-
done and the combination of M100907 and sulpiride to
increase prefrontal cortical PFC DA efflux were both
blocked by WAY100635. These findings suggest that the
combination of D2 antagonism and 5-HT1A agonism pro-
vides some of the key features of atypical antipsychotic
agents. S16924, a 5-HT1A partial agonist D2 antagonist, is
an example of a putative atypical antipsychotic drug based
on this model. It has atypical antipsychotic properties very
similar to those of clozapine in a variety of relevant animal
models (64). Whether this or similar compounds will have
the same spectrum of efficacy and side effect advantages as
the multireceptor antagonists that are relatively more potent
5-HT2A than D2 antagonists remains to be determined.
Significant differences should be expected. It is noteworthy
that clozapine has both relatively more potent 5-HT2A an-
tagonism than D2 antagonism as well as 5-HT1A partial
agonism. This may be part of the mixture that accounts for
its particular advantages over other atypical antipsychotic
drugs. Wedzony et al. (135) found that WAY100135, a
5-HT1A antagonist, attenuated the effect of MK-801, an
NMDA antagonist on locomotor activity, prepulse inhibi-
tion, and the detrimental effect of MK-801, a noncompeti-
tive NMDA antagonist on working memory and selective
attention in rats. They cite other evidence that 5-HT1A an-
tagonists may improve learning and memory in animal

models and suggest this may be due to blocking the inhibi-
tory effects of 5-HT1A receptor stimulation on the firing of
hippocampal neurons. This suggests that a partial agonist,
acting as an antagonist, may sometimes be of benefit with
regard to effects relevant to schizophrenia.

THE ROLE OF SEROTONIN RELEASE IN
ANTIPSYCHOTIC DRUG ACTION

The antagonism of multiple 5-HT receptors by clozapine
would be expected to enhance the release of 5-HT by feed-
back mechanisms. Thus, it is surprising that Ferré and Arti-
gas (136) reported that clozapine decreased 5-HT release
in the nucleus accumbens. However, Ichikawa et al. (137)
reported that clozapine (20 mg/kg) and risperidone (1 mg/
kg) significantly increased extracellular 5-HT levels in the
nucleus accumbens and medial prefrontal cortex, respec-
tively, whereas amperozide (1 and 10 mg/kg) increased ex-
tracellular 5-HT levels in both regions. Hertel et al. (138)
reported similar results with risperidone and suggested that
this might be relevant to its ability to improve negative
symptoms. If so, this is not the explanation for the effects
of clozapine or olanzapine on negative symptoms because
olanzapine, sulpiride, haloperidol, and M100907 had no
effect on extracellular 5-HT levels in either region. The
latter consideration also indicates that blockade of 5-HT2A
receptors is not the basis for the ability of clozapine, risperi-
done, or amperozide to increase 5-HT levels. The enhance-
ment of 5-HT efflux in the prefrontal cortex may contribute
to the ability of these agents to improve mood disorders
and cognition.

�2- AND �1-ADRENERGIC MECHANISMS
AND ATYPICAL ANTIPSYCHOTIC DRUGS

Most of the atypical antipsychotic drugs are potent antago-
nists of the �1 or �2 adrenoceptors, or both. Thus, risperi-
done 9-hydroxyrisperidone, clozapine, olanzapine, zotep-
ine, quetiapine, ORG-5222, sertindole and ziprasidone are
potent �1 antagonists (22). Prazosin, an �1 adrenoceptor
antagonist, has, like clozapine and other atypical antipsy-
chotic drugs, been shown to increase DA efflux in the shell
but not the core of the nucleus accumben, signifying a lim-
bic rather than a striatal effect of �1 antagonism (91). These
authors also suggested that �1 antagonism may explain the
atypical properties of sertindole, which has been reported
to achieve as high an occupancy of D2 receptors as typical
antipsychotic drugs (36). All of the atypical agents men-
tioned above are also potent �2 antagonists, with the excep-
tion of zotepine and sertindole (22). Kalkman et al. (116)
raised the possibility that the �2C subtype may be particu-
larly relevant to the anticataleptic as well as other actions
of clozapine and iloperidone. However, McAllister and Rey
(139) were unable to reverse the effects of loxapine or halo-
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peridol on catalepsy with �2 antagonists and showed that
the effect of clozapine to reverse loxapine-induced increase
in catalepsy was due to its anticholinergic rather than its
adrenoceptor blocking properties. Clozapine produces mas-
sive increases in plasma norepinephrine, which may indicate
that it can cause effective stimulation of �-adrenoceptors
receptors in brain (140). The addition of idazozan, an �2

antagonist, to fluphenazine, a typical neuroleptic, was re-
ported by Littman et al. (141) to have efficacy comparable
to clozapine in a small group of neuroleptic-resistant pa-
tients with schizophrenia. These results need to be repli-
cated. Idazoxan has also been shown to improve attentional
and executive dysfunction in patients with dementia of the
frontal type (142), suggesting that some of the cognitive
enhancing effects of the atypical antipsychotic drugs might
be related to their �2 blocking properties. Another �2 antag-
onist, atipamezole, has been reported to improve cognitive
performance in aged rats (143). Polymorphisms of the �1

and �2 receptors have been reported not to predict response
to clozapine (144).
In this regard, it is of interest that idazoxan has been

shown to preferentially increase DA efflux in the rat mPFC
by an action at the terminal area (145). This effect appears
to be independent of dopaminergic activity (146). West-
erink et al. (147) demonstrated that systemic administration
of clozapine, risperidone, ziprasidone, and olanzapine, as
well as haloperidol, produced a dose-dependent increase in
noradrenaline in the mPFC of rats. This effect was closely
coupled to the increase in DA efflux. Increased levels of
norepinephrine might also be related to the cognitive and
antidepressant effects of the atypical antipsychotic drugs
(148,149).

CONCLUSION

Typical neuroleptic drugs such as haloperidol have been
reliably shown to produce their antipsychotic action by
blockade of D2 receptors in the mesolimbic system, suggest-
ing that increased dopaminergic activity in these terminal
areas of the ventral tegmental DA neurons are of importance
to the etiology of schizophrenia. Striatal D2 receptor antag-
onism is the critical element in the EPSs produced by these
drugs. Atypical antipsychotic drugs are those antipsychotics
that achieve an antipsychotic action with quantitatively less
EPSs in humans or a clear distinction between doses that
affect mesolimbic and striatal dopaminergic function in ro-
dents. Clozapine was the first atypical antipsychotic drug
by the definition noted above, but more importantly it
showed that antipsychotic drugs might also be effective in
some patients with schizophrenia whose positive symptoms
do not respond to neuroleptic-type agents and to improve
negative symptoms, cognitive impairment, depression, and
possibly suicidality of schizophrenia and other psychotic
disorders as well (150–152). There is strong evidence of

the role of 5-HT2A receptors and suggestive evidence of the
roles of the 5-HT1A, 5-HT2C, and �1 receptors in various
actions of clozapine, risperidone, olanzapine, quetiapine, zi-
prasidone, iloperidone, sertindole, and related atypical anti-
psychotic drugs. Atypical antipsychotic drugs that are po-
tent 5-HT2A antagonists relative to their D2 receptor
blocking property appear to potentiate 5-HT1A-mediated
effects on dopaminergic neurons in the mesocortical, meso-
limbic, and mesostriatal regions. The effects in the mesocor-
tical regions appear to be mediated by modulation of gluta-
mate release from pyramidal neurons. These agents have
been found to preferentially increase DA efflux in the mPFC
compared to limbic and striatal regions. They also increase
acetylcholine release in the PFC. Effects on 5-HT2C,
5-HT3, 5-HT4, 5-HT6, and 5-HT7 receptors may also be
relevant to some of their actions, e.g., improvement of cog-
nition, weight gain, etc. Other models of atypicality appear
to be effective, including partial DA agonists such as aripi-
prazole. Selective D2/D3 antagonists such as amisulpride
may also have atypical properties. At this time, multirecep-
tor agents appear to be more promising as antipsychotic
agents for the majority of psychiatric patients because of
important interactions between neural circuits that employ
multiple neurotransmitters.
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104. Altman HJ, Stone WS, Ögren S. Evidence for a possible func-
tional interaction between serotonergic and cholinergic mecha-
nism in memory retrieval. Behav Neural Biol 1987;48:49–62.

105. Consolo S, Arnaboldi S, Giorgi S, et al. 5-HT4 receptor stimula-
tion facilitates acetylcholine release in rat frontal cortex. Neu-
roreport 1994;5:1230–1232.

106. Consolo S, Bertorelli R, Russi G, et al. Serotonergic facilitation
of acetylcholine release in vivo from rat dorsal hippocampus via
serotonin 5-HT3 receptors. J Neurochem 1994;62:2254–2261.

107. Consolo S, Ramponi S, Ladinsky H, et al. A critical role for
D1 receptors in the 5-HT1A-mediated facilitation of in vivo
acetylcholine release in rat frontal cortex. Brain Res 1996;707:
320–323.

108. Zhelyazkova-Savova M, Giovannini MG, Pepeu G. Increase of
cortical acetylcholine release after systemic administration of
chlorophenylpiperazine in the rat: an in vivo microdialysis
study. Neurosci Lett 1997;236:151–154.

109. Zhelyazkova-Savova M, Giovannini MG, Pepeu G. Systemic
chlorophenylpiperazine increases acetylcholine release from rat
hippocampus-implication of 5-HT2C receptors. Pharmacol Res
1999;40:165–170.

110. Buhot M-C. Serotonin receptors in cognitive behaviors. Curr
Opin Neurobiol 1997;7:243–254.

111. Meneses A, Hong E. A pharmacological analysis of serotonergic
receptors: effect of their activation of blockade in learning. Prog
Neuropsychopharmacol Biol Psychiatry 1997;21:273–296.
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